
DITA Open Toolkit

Release 4.3

Contents

Part 1 DITA Open Toolkit 4.3... 9

Chapter 1 Release Notes... 11

Chapter 2 Authoring formats...19
Standard DITA XML..19
Markdown input...19
Lightweight DITA...21

Chapter 3 Output formats..23
PDF... 23
HTML5...23
Eclipse help...24
HTML Help..24
Markdown..25
Normalized DITA...26
XHTML.. 27

Part 2 Installing..29

Chapter 4 Prerequisite software... 31

Chapter 5 Checking the version... 33

Chapter 6 First build.. 35

Chapter 7 Installing via Homebrew...37

Part 3 Publishing... 39

Chapter 8 Using the dita command..41
Using a properties file...45
Migrating Ant builds.. 46
Using a project file..49

XML project files... 52
JSON project files... 55
YAML project files...57

Chapter 9 Using Docker images... 59
Custom images... 60

Chapter 10 Using GitHub Actions...63

Chapter 11 Using Ant...67
Apache Ant™...67

iii

Building output using Ant..67
Creating an Ant build script.. 68

Chapter 12 Using the Java API... 71

Part 4 Configuring... 73

Chapter 13 DITA command arguments.. 75

Chapter 14 DITA-OT parameters... 81
Common..81
PDF... 88
HTML-based output.. 90
HTML5...93
XHTML.. 96
HTML Help..96
Eclipse Help.. 96
Other... 97

Chapter 15 Configuration properties..99
.ditaotrc... 99
local.properties..100
plugin.properties..101
configuration.properties...101
Internal Ant properties.. 104

Chapter 16 Customizing HTML... 105
Setting HTML parameters...105

Adding navigation..105
Adding custom CSS..106
Headers and footers... 107
Handling content outside the map directory....................................... 108

Using a properties file...109

Chapter 17 Customizing PDF.. 111
Customization approaches..111
Generating revision bars...113
PDF themes.. 114

Sample theme file... 114
Page settings.. 118
Header and footer...118
Styles...123
Variables..131
Extending themes... 131
Syntactic sugar..132

iv

Part 5 Extending.. 135

Chapter 18 Installing plug-ins... 137

Chapter 19 Removing plug-ins..139

Chapter 20 Plug-in registry..141

Chapter 21 Creating plug-ins.. 145
Plug-in benefits... 145
Plug-in descriptor file.. 146
Coding conventions.. 151
Plug-in dependencies..155

Referencing files from other plug-ins..156
Plug-in use cases... 157

Setting parameters..157
Adding a new Ant target...158
Adding a pre-processing step...158
Adding a new output format... 160
Processing topics with XSLT.. 161
Adding new parameters..163
Overriding XSLT steps..164
Adding a Java library..165
Adding new messages..166
New extension points..168
Extending an XML catalog file..170
Rewriting file names... 171
Saxon customizations... 172

Custom HTML plug-ins... 175
Bundling custom CSS...175
Embedding web fonts... 178
Inserting JavaScript...180

Custom PDF plug-ins..183
Types of PDF plug-ins.. 183
PDF plug-in structure..184
Simple PDF plug-in...188
PDF plug-in resources.. 190

Globalizing DITA content.. 192
Globalization support.. 192
Supported languages.. 193
Customizing generated text.. 194

Migrating customizations...199
To 4.3..200
To 4.2..201
To 4.1..203
To 4.0..203

v

To 3.7..205
To 3.6..207
To 3.5..209
To 3.4..213
To 3.3..214
To 3.2..215
To 3.1..216
To 3.0..217
To 2.5..219
To 2.4..220
To 2.3..221
To 2.2..224
To 2.1..225
To 2.0..227
To 1.8..228
To 1.7..229
To 1.6..235
To 1.5.4...238

Chapter 22 Rebuilding documentation...241

Part 6 Troubleshooting... 243

Chapter 23 Logging..245

Chapter 24 Enabling debug mode.. 249

Chapter 25 DITA-OT error messages... 251

Chapter 26 Other error messages.. 277

Chapter 27 Command line help...279

Chapter 28 Increasing Java memory..281

Chapter 29 Speeding up builds...283

Chapter 30 Configuring proxies..285

Part 7 Reference.. 287

Chapter 31 DITA-OT architecture..289
Processing structure... 289
Map-first pre-processing... 290
Processing modules..292
Processing order...293
Store API...294
Pre-processing modules... 295

Generate lists (gen-list)... 295

vi

Debug and filter (debug-filter)... 296
Resolve map references (mapref)...297
Branch filtering (branch-filter)...297
Resolve key references (keyref)..297
Copy topics (copy-to)...298
Conref push (conrefpush)... 298
Resolve content references (conref)..298
Filter conditional content (profile).. 299
Resolve topic fragments and code references (topic-fragment)...299
Chunk topics (chunk)...299
Move metadata (move-meta-entries) and pull content into maps

(mappull).. 300
Map-based linking (maplink).. 300
Pull content into topics (topicpull)...301
Flagging (flag-module)... 301
Map cleanup (clean-map)...305
Copy related files (copy-files)... 305

HTML-based processing modules.. 305
Common HTML-based processing... 306
XHTML processing..306
HTML5 processing.. 306
Eclipse help processing.. 306
HTML Help processing... 307

PDF processing modules..308
History of the PDF transformation.. 309

Chapter 32 DITA specification support.. 311
DITA 1.2 support.. 311
DITA 1.3 support.. 312
DITA 2.0 preview.. 313
Implementation-dependent features... 316
Codeblock extensions...318
DITA features in docs...321

Chapter 33 Extension points... 325
All extension points...325
General extension points.. 332
Pre-processing extension points...333
XSLT-import extension points...334
XSLT-parameter extension points.. 336
Version and support information...337
Plug-in extension points..338

Common processing... 338
PDF... 341
HTML-based output.. 342
HTML5...342

vii

HTML Help..343
Eclipse Help.. 343
Markdown.. 343
Validate..343

Chapter 34 Markdown formats.. 345
Markdown DITA syntax...345

Common syntax.. 352
MDITA syntax... 355

Common syntax.. 358
Format comparison... 362
Markdown schemas.. 363
Custom schemas.. 364

Chapter 35 License...367
Third-party software.. 367

Chapter 36 Resources..369
Web-based resources...369
Books.. 370
Glossary.. 371

Index... 375

viii

Part 1 DITA Open Toolkit 4.3

DITA Open Toolkit, or DITA-OT for short, is a set of Java-based, open-source tools that
provide processing for content authored in the Darwin Information Typing Architecture.

Note: While the DITA standard is owned and developed by OASIS, the DITA Open Toolkit
project is governed separately. DITA-OT is an independent, open-source implementation of
the DITA standard.

DITA-OT documentation

The DITA Open Toolkit documentation provides information about installing, running,
configuring, and extending the toolkit.

• This first part includes Release Notes with information on the changes in the current release,
and the Authoring formats and Output formats that are provided in the default installation of
DITA-OT 4.3.

• Part 2 Installing DITA Open Toolkit on page 29 shows how to install the toolkit and run a
build to verify the installation.

• Part 3 Publishing DITA content on page 39 explains the methods that can be used to
publish DITA content to other formats, including the dita command, Ant, and the Java API,
along with information on building output from a containerized environment such as Docker
or GitHub Actions.

• Part 4 Configuring DITA-OT on page 73 explains how to adjust DITA Open Toolkit
behavior via dita command arguments and options, parameter settings, and configuration
properties.

• Part 5 Extending DITA-OT with plug-ins on page 135 explains how to install, remove, and
discover plug-ins, and create custom plug-ins to change the default transformations or add
new output formats.

• Part 6 Error messages and troubleshooting on page 243 contains information about
resolving problems that you might encounter.

• Reference topics provide additional information about the DITA Open Toolkit Architecture,
DITA specification support, and other DITA and DITA-OT resources.

Chapter 1 Release Notes...11
Chapter 2 Authoring formats.. 19
Chapter 3 Output formats... 23

9

http://docs.oasis-open.org/dita/dita/v1.3/dita-v1.3-part0-overview.html

DITA Open Toolkit 4.3

10

DITA Open Toolkit 4.3 Release Notes

Chapter 1 DITA Open Toolkit 4.3 Release Notes

DITA Open Toolkit 4.3.2 is a maintenance release that fixes issues reported in DITA-
OT 4.3, which includes new init and validate subcommands that can be used to set
up projects from a template and check files for errors before publishing. You can now
publish multiple formats on the command line at once, add raw DITA to Markdown files,
and publish bookmaps with PDF themes.

DITA-OT releases follow semantic versioning guidelines. Version numbers use the
major.minor.patch syntax, where major versions may include incompatible
API changes, minor versions add functionality in a backwards-compatible manner and
patch versions are maintenance releases that include backwards-compatible bug fixes.

Tip: Download the dita-ot-4.3.2.zip package from the project website at dita-
ot.org/download.

Requirements: Java 17

DITA-OT 4.3 is designed to run on Java version 17 or later and built and tested with the Open
Java Development Kit (OpenJDK). Compatible Java distributions are available from multiple
sources:

• You can download Oracle distributions from oracle.com/java under commercial license.

• Eclipse Temurin is the free OpenJDK distribution available from adoptium.net.

• Free OpenJDK distributions are also provided by Amazon Corretto, Azul Zulu, and Red Hat.

• Java versions are also available via package managers such as Chocolatey, Homebrew, or
SDKMAN!

Note: The Java virtual machine is generally backwards compatible, so class files built with
earlier versions should still run correctly with Java 17 and DITA-OT 4.3. If your DITA-OT
installation contains plug-ins with custom Java code, you may need to recompile these with
Java 17 — but in most cases, this step should not be necessary.

DITA-OT 4.3.2

DITA Open Toolkit 4.3.2 is a maintenance release that includes the following bug fixes.

• The GitHub release workflow was updated in DITA-OT 4.3.1 to build Docker images for both
linux/amd64 and linux/arm64 architectures, but this caused errors in GitHub Actions
as reported in dita-ot-action#11. The release workflow has been updated to use the official
Docker actions, which support multi-platform builds and push the resulting platform-specific
images to Docker Hub. #4609

11

https://semver.org
https://www.dita-ot.org/download
https://www.dita-ot.org/download
https://www.oracle.com/java/technologies/downloads/
https://adoptium.net/temurin/releases/?version=17
https://aws.amazon.com/corretto/
https://www.azul.com/downloads/
https://developers.redhat.com/products/openjdk/download
https://chocolatey.org/
https://brew.sh
https://sdkman.io/jdks
https://github.com/dita-ot/dita-ot-action/issues/11
https://github.com/dita-ot/dita-ot/issues/4609

DITA Open Toolkit 4.3

• Table processing has been updated to improve handling for broken tables. If the @morerows
attribute value is not an integer, strict processing mode will now report an exception. If a row
has fewer columns than the preceding row, processing will continue instead of failing with a
Java exception. #4620, #4628

• Earlier versions of the map-first pre-processing routines in preprocess2 did not apply
stylesheets and parameters that were passed to the mapref processing phase by custom plug-
ins. The mapref module configuration has been updated to ensure that preprocess2
respects the same parameters as the original pre-processing routine. #4624, #4625

• Several dependencies have been upgraded to include the latest utility versions and fix security
issues in bundled libraries. #4632

• Apache Commons IO 2.19.0

• ICU4J 77.1

• Guava 33.4.8-jre

• Jackson data binding library 2.19.0

• Jing 20241231

• Logback Classic Module 1.5.18

• Saxon 12.7

• SLF4J 2.0.17

• XML Resolver 5.3.3

• The bundled Apache™ FOP version has been updated to 2.11, which includes PDFBox 3
and the latest versions of the Apache™ Batik SVG Toolkit and Apache™ XML Graphics
Commons libraries. #4623, #4634

(For details on recent changes, see the Apache FOP 2.11 Release Notes.)

For additional information on the issues resolved since the previous release, see the 4.3.2
milestone and changelog on GitHub.

DITA-OT 4.3.1 released March 23, 2025

DITA Open Toolkit 4.3.1 is a maintenance release that includes the following bug fixes.

• DITA-OT 4.2 and later versions produced broken links in the navigation ToC when the
@copy-to attribute was defined on topic references, or the force-unique option was
used. Generated temporary file names were used instead of the @copy-to attribute value.
The @copy-to attribute value is now respected to ensure the correct links are written to the
ToC. #4564, #4569

• DITA-OT 4.3 included a regression bug that generated output in the out subdirectory of the
DITA-OT installation directory if the output location was not explicitly specified. In this case,
output is now generated in the out subdirectory of the current directory as in DITA-OT 4.2.4
and earlier versions. #4589, #4594

• The new validate subcommand introduced in DITA-OT 4.3 can now also be run by setting
the -f or --format options to validate. The dita command line interface has also
been updated to prevent conflicts between the validate subcommand and the existing
validate parameter. #4590, #4592, #4602, #4603

12

https://github.com/dita-ot/dita-ot/issues/4620
https://github.com/dita-ot/dita-ot/issues/4628
https://github.com/orgs/dita-ot/discussions/4624
https://github.com/dita-ot/dita-ot/issues/4625
https://github.com/dita-ot/dita-ot/issues/4632
https://github.com/dita-ot/dita-ot/issues/4623
https://github.com/dita-ot/dita-ot/issues/4634
https://xmlgraphics.apache.org/fop/2.11/releaseNotes_2.11.html
https://github.com/dita-ot/dita-ot/issues?q=milestone%3A4.3.2+is%3Aclosed
https://github.com/dita-ot/dita-ot/issues?q=milestone%3A4.3.2+is%3Aclosed
https://github.com/dita-ot/dita-ot/compare/4.3.1...4.3.2
https://github.com/dita-ot/dita-ot/issues/4564
https://github.com/dita-ot/dita-ot/issues/4569
https://github.com/dita-ot/dita-ot/issues/4589
https://github.com/dita-ot/dita-ot/issues/4594
https://github.com/dita-ot/dita-ot/issues/4590
https://github.com/dita-ot/dita-ot/issues/4592
https://github.com/dita-ot/dita-ot/issues/4602
https://github.com/dita-ot/dita-ot/issues/4603

DITA Open Toolkit 4.3 Release Notes

• DITA-OT Docker images can now be built for both 64-bit Linux AMD and ARM
architectures. No changes are required to benefit from this enhancement. Docker should
automatically select the image that corresponds to the current machine architecture. #4593

• Earlier versions of DITA-OT generated invalid nested paragraphs in HTML output when the
<lines> element was used in a paragraph. Processing has been updated to ensure that lines
content is treated as a block element and rendered in separate paragraphs. #4596, #4599

• Earlier versions of DITA-OT miscalculated the base directory when publications included
resource-only topics that were outside of the root map directory. Resource-only topics are now
ignored in this process to ensure that relative paths between resources are generated correctly.
#4606

• Several dependencies have been upgraded to include the latest utility versions and fix security
issues:

• Ant 1.10.15 #4595

• Logback 1.5.17 #4588

• Saxon 12.5 #4595

For additional information on the issues resolved since the previous release, see the 4.3.1
milestone and changelog on GitHub.

DITA-OT 4.3 released February 15, 2025

DITA Open Toolkit Release 4.3 includes new init and validate subcommands that can be
used to set up projects from a template and check files for errors before publishing. You can now
publish multiple formats on the command line at once, add raw DITA to Markdown files, and
publish bookmaps with PDF themes.

Preview Init subcommand

The new init subcommand initializes a project with files from a template. #4509, #4523

The initial implementation is a preview feature designed to illustrate how project templates work.
You can use templates as a starting point for new publications with required metadata, media
assets, or custom stylesheets, or provide examples of your organization’s preferred markup.

• For a list of available templates, run dita init --list

• To add files from a template to the current directory, run dita init template

The folder hierarchy in the template will be copied to the current working directory by default.
To write the files to a different location, add the --output option and specify the desired path.
The directory will be created if it doesn’t exist. If any of the template files are already present, an
error will appear.

Tip: Sample project templates are provided in the new org.dita.init plug-in. If you have
a common project structure that would be useful beyond your organization, you can contribute
new templates to future DITA-OT versions, or create a custom plug-in with company-specific
project templates.

13

https://github.com/dita-ot/dita-ot/issues/4593
https://github.com/dita-ot/dita-ot/issues/4596
https://github.com/dita-ot/dita-ot/issues/4599
https://github.com/dita-ot/dita-ot/issues/4606
https://github.com/dita-ot/dita-ot/issues/4595
https://github.com/dita-ot/dita-ot/issues/4588
https://github.com/dita-ot/dita-ot/issues/4595
https://github.com/dita-ot/dita-ot/issues?q=milestone%3A4.3.1+is%3Aclosed
https://github.com/dita-ot/dita-ot/issues?q=milestone%3A4.3.1+is%3Aclosed
https://github.com/dita-ot/dita-ot/compare/4.3...4.3.1
https://github.com/dita-ot/dita-ot/issues/4509
https://github.com/dita-ot/dita-ot/issues/4523
https://github.com/dita-ot/org.dita.init

DITA Open Toolkit 4.3

Validate subcommand

A new validate subcommand can be used to check input files for errors before publishing.
#4397, #4400

This command runs the pre-processing routines in strict mode and reports any errors or warnings.
This is ideal for continuous integration scenarios, as it allows you to quickly check contributions
for errors without building output.

A new depend.validate extension point defines an Ant target to run with the dita
validate subcommand after pre-processing, so you can extend the default validation
mechanisms with your own checks.

Multiple output formats from CLI

You can now publish multiple formats at once from a single dita command sequence. #4486

To produce several output formats from a single build, pass the --format option for each
transformation, or use the -f shorthand. For example:

dita -i sample.ditamap -f html5 -f pdf

The result will be the same as if you had issued separate commands for each format:

dita --input=sample.ditamap --format=html5
dita --input=sample.ditamap --format=pdf

This can be used as a simple alternative to a DITA-OT project file that defines multiple
deliverables.

Lightweight DITA and Markdown updates

The org.lwdita plug-in has been updated to version 5.9, which includes a series of bug fixes
and support for additional DITA constructs in Markdown input, including:

• Language identifiers in fenced code blocks can now be processed with an optional prefix to
enable syntax highlighting in environments that require different keywords. For example,
if Markdown files contain code blocks with JavaScript code, they may start with ```js
to display the code block with syntax highlighting on GitHub. The plug-in can now add
a prefix like language- to the DITA @outputclass value, included in HTML5 as
class="language-js" for HTML5-compliant syntax highlighting with libraries like
Prism. #228

• Admonition types are no longer case-sensitive, so both !!! note and !!! Note will be
rendered as DITA <note> elements, regardless of the capitalization of the @type keyword.
#229

• If you need to include DITA content that has no equivalent markup in Markdown DITA
syntax on page 345, you can now use raw DITA XML directly in Markdown files. You can
use this approach to include things like <xmlelement> or <hazardstatement>, which
would otherwise be impossible to express in Markdown. #217

• Earlier versions would crash when processing Markdown files that did not begin with a
heading. These files are now converted to valid DITA with an empty <title> element, and
an error message appears in the log to aid in debugging. #223

14

https://github.com/dita-ot/dita-ot/issues/4397
https://github.com/dita-ot/dita-ot/issues/4400
https://github.com/dita-ot/dita-ot/issues/4486
https://www.w3.org/TR/html52/textlevel-semantics.html#the-code-element
https://prismjs.com
https://github.com/jelovirt/org.lwdita/pull/228
https://github.com/jelovirt/org.lwdita/pull/229
https://github.com/jelovirt/org.lwdita/pull/217
https://github.com/jelovirt/org.lwdita/pull/223

DITA Open Toolkit 4.3 Release Notes

Bookmap support in PDF themes

The PDF theme plug-in com.elovirta.pdf has been updated to version 0.8 for better
bookmap support. #111 You can now style the following bookmap elements in a YAML or JSON
theme without building a custom PDF plug-in:

• <part>

• <chapter>

• <appendix>

• <index>

Table of contents (ToC) styles have moved to the root style key. ToC styling has also been
extended for better bookmap support, so you can now specify styles for each level with dedicated
keys such as style-toc-part, style-toc-chapter, etc.

Parts and chapters now also support their own local contents listings, which you can enable by
setting the corresponding layout key, for example chapter-layout: MINITOC. You can
then define styling for each level via keys like style-part-toc-chapter, or style-
chapter-toc-1.

A new default theme provides basic styling such as font settings, indentation, and title
numbering for a range of commonly used elements. This theme is not intended for publishing
as is, but can serve as a foundation for custom themes, and reduce the number of elements you
need to style yourself. To use the default theme as the baseline for your own custom theme, add
extends: default to your theme file. #112, #114

Preview DITA 2.0 updates

In addition to the DITA 2.0 preview support on page 313 provided in DITA-OT 3.5 – 4.2, this
release includes updated processing for the latest draft versions of the DITA 2.0 grammar files
from OASIS (as of January 22, 2024).

• HTML5 processing now supports the @height and @width attributes on the DITA 2.0
<video> element to ensure that videos are scaled correctly. #4570

• HTML5 and PDF processing has been updated to support the new DITA 2.0 emphasis domain
elements: for emphasis and for strong emphasis. #4571

DITA documents that reference the draft grammar files can be parsed, and where features overlap
with DITA 1.3, those features will work as expected.

Note: Other new or revised features proposed for DITA 2.0 are not yet supported. Additional
features will be implemented in future versions of DITA-OT as the specification evolves.

Enhancements and changes

DITA Open Toolkit Release 4.3 includes the following enhancements and changes to existing
features:

• To reduce page load times, HTML5 output now uses lazy loading for external images. #4001,
#4005 Local and peer image resources are loaded eagerly as in previous versions, but images
defined with @scope="external" are now output with the @loading attribute set to

15

https://github.com/jelovirt/pdf-generator/pull/111
https://github.com/jelovirt/pdf-generator/pull/112
https://github.com/jelovirt/pdf-generator/pull/114
https://github.com/dita-ot/dita-ot/issues/4570
https://github.com/dita-ot/dita-ot/issues/4571
https://developer.mozilla.org/en-US/docs/Web/Performance/Lazy_loading
https://github.com/dita-ot/dita-ot/issues/4001
https://github.com/dita-ot/dita-ot/issues/4005

DITA Open Toolkit 4.3

"lazy" by default. A new set-image-loading template mode allows custom plug-ins
to override the default behavior if necessary.

• The Java code for the map-first pre-processing routines now includes Javadoc comments
to document how the various stages are implemented. This documentation is not published
separately, but is available to developers who need to extend map processing or topic
processing in custom plug-ins. Many development environments extract and display the
Javadoc information while viewing the source code. #4404

• The Java code has been modernized to use more standard library features and reduce
dependencies on external libraries, and restructured with automatic refactoring tools to make it
easier to read and maintain. #4407, #4441, #4442, #4444, #4498

• A new DOTJ088E error message makes it easier to identify XML parsing exceptions in the
log. #4408 The error appears when the input is in some way invalid but can still be parsed.
The message content begins with “XML parsing error:” and provides additional
context from the parser in the <reason>. As with other error messages, custom plug-ins may
override the message content or severity.

• DITA-OT uses the Xerces SecurityManager to protect against the so-called “billion laughs
attack”, an entity expansion technique that can cause XML parsers to run out of memory and
overload the CPU when parsing maliciously crafted files. DITA-OT will now stop parsing and
report an error when processing any files that exceed the entity limit imposed by the security
manager library. #4542, #4556

• Several bundled dependencies have been upgraded to the latest versions:

• Apache™ FOP 2.10 (including the Apache™ Batik SVG Toolkit and Apache™ XML
Graphics Commons libraries) #4519, #4565

Bug fixes

DITA Open Toolkit Release 4.3 provides fixes for the following bugs:

• In earlier versions, installing a plug-in from a path that contained the at-sign character “@”
failed with an InvalidArgumentException. The implementation has been updated to ensure
these paths are handled correctly. #4354, #4558

• Earlier versions issued the DOTJ037W twice when running transformations with the
validate parameter set to false. This warning has been moved from the Java code to
Ant, which ensures that it only appears once for each transformation. #4377, #4396

Contributors

DITA Open Toolkit Release 4.3 includes code contributions by the following people:

1. Jarno Elovirta

2. Julien Lacour

3. Robert D Anderson

4. Roger Sheen

5. Andrei Pomacu

6. Chris Papademetrious

7. Jason Fox

For the complete list of changes since the previous release, see the changelog on GitHub.

16

https://github.com/dita-ot/dita-ot/issues/4404
https://github.com/dita-ot/dita-ot/issues/4407
https://github.com/dita-ot/dita-ot/issues/4441
https://github.com/dita-ot/dita-ot/issues/4442
https://github.com/dita-ot/dita-ot/issues/4444
https://github.com/dita-ot/dita-ot/issues/4498
https://github.com/dita-ot/dita-ot/issues/4408
https://en.wikipedia.org/wiki/Billion_laughs_attack
https://en.wikipedia.org/wiki/Billion_laughs_attack
https://github.com/dita-ot/dita-ot/issues/4542
https://github.com/dita-ot/dita-ot/issues/4556
https://github.com/dita-ot/dita-ot/issues/4519
https://github.com/dita-ot/dita-ot/issues/4565
https://github.com/dita-ot/dita-ot/issues/4354
https://github.com/dita-ot/dita-ot/issues/4558
https://github.com/dita-ot/dita-ot/issues/4377
https://github.com/dita-ot/dita-ot/issues/4396
https://github.com/dita-ot/dita-ot/graphs/contributors
https://github.com/dita-ot/dita-ot/compare/4.2...4.3

DITA Open Toolkit 4.3 Release Notes

Documentation updates

The documentation for DITA Open Toolkit Release 4.3 has been reorganized to simplify the
navigation in HTML versions and reduce the number of parts in PDF output. All of the content
from previous versions is still available, though arranged slightly differently. The diagram in
Figure 1: DITA-OT 4.3 navigation changes on page 17 shows the previous structure on the
left, and the new locations on the right.

Landing Page

DITA Open Toolkit 4.3

Release Notes
Authoring formats

Output formats

Installing DITA-OT Installing

Building output Publishing

Parameters

ConfiguringCustomizing HTML

Customizing PDF

Adding plug-ins

Extending
Creating plug-ins

Error messages and troubleshooting Troubleshooting

Reference topics Reference

Resources

Figure 1: DITA-OT 4.3 navigation changes

The legacy Ant samples and garage sample files have been removed from the docsrc/
samples subfolder of the installation directory. If your workflow relies on these files, you can
restore them to the original location with the new init subcommand:

dita init samples path/to/dita-ot-dir/docsrc/samples

17

DITA Open Toolkit 4.3

For additional information on documentation issues resolved in DITA Open Toolkit Release 4.3,
see the 4.3 milestone in the documentation repository.

DITA Open Toolkit Release 4.3 includes documentation contributions by the following people:

1. Roger Sheen

2. Jarno Elovirta

3. Lief Erickson

4. Stefan Weil

For the complete list of documentation changes since the previous release, see the changelog.

18

https://github.com/dita-ot/docs/issues?q=milestone%3A4.3+is%3Aclosed
https://github.com/dita-ot/docs/graphs/contributors
https://github.com/dita-ot/docs/compare/4.2...4.3

Authoring formats

Chapter 2 Authoring formats

In addition to standard DITA XML, DITA-OT supports several alternative input formats,
including Markdown and the proposed XDITA, MDITA and HDITA authoring formats
currently in development for Lightweight DITA.

Standard DITA XML.. 19
Markdown input.. 19
Lightweight DITA...21

Standard DITA XML
DITA Open Toolkit supports all released versions of the OASIS DITA specification,
including 1.0, 1.1, 1.2, and 1.3. As of release 4.3, DITA-OT also provides an initial
preview of features for the latest draft of the upcoming DITA 2.0 standard.

The DITA specification “defines a set of document types for authoring and organizing topic-
oriented information, as well as a set of mechanisms for combining, extending, and constraining
document types.” The DITA 1.3 specification is the authoritative source of information on
authoring DITA content in XML.

Tip: For details on how DITA Open Toolkit processes DITA XML content, see Chapter 32
DITA specification support on page 311.

Markdown input
Markdown is a lightweight markup language that allows you to write using an easy-to-
read plain text format and convert to structurally valid markup as necessary.

In the words of its creators:

“The overriding design goal for Markdown’s formatting syntax is to make it as
readable as possible. The idea is that a Markdown-formatted document should be
publishable as-is, as plain text, without looking like it’s been marked up with tags or
formatting instructions.”

DITA Open Toolkit allows you to use Markdown files directly in topic references and export
DITA content as Markdown.

These features enable lightweight authoring scenarios that allow subject matter experts to
contribute to DITA publications without writing in XML, and support publishing workflows that
include DITA content in Markdown-based publishing systems.

19

http://docs.oasis-open.org/dita/dita/v1.3/dita-v1.3-part0-overview.html
https://daringfireball.net/projects/markdown/

DITA Open Toolkit 4.3

Adding Markdown topics

In 2015, the original DITA-OT Markdown plug-in introduced a series of conventions to convert
Markdown content to DITA, and vice-versa. This Markdown flavor was called Markdown DITA.
The markdown format adds several complementary constructs to represent DITA content in
Markdown, beyond those proposed for the MDITA format in the Lightweight DITA specification
drafts.

Tip: For details on the differences in Chapter 34 Markdown formats on page 345, see
Markdown DITA syntax on page 345, MDITA syntax on page 355, and Format
comparison on page 362.

To add a Markdown topic to a DITA publication, create a topic reference in your map and set the
@format attribute to markdown so the toolkit will recognize the source file as Markdown and
convert it to DITA:

1 <?xml·version="1.0"·encoding="utf-8"?>
2 <!DOCTYPE·map·PUBLIC·"-//OASIS//DTD·DITA·Map//EN"·"map.dtd">
3 <map>
4 ··<topicref·href="markdown-dita-topic.md"·format="markdown"/>
5 </map>

When you add Markdown topics to a DITA publication as described above, the content is
temporarily converted to DITA in the background when generating other output formats like
HTML or PDF, but the Markdown source files remain unchanged.

Tip: This approach is recommended in cases where simple content is authored collaboratively
over multiple versions, as Markdown topics can be edited by a wide range of authors and
combined as necessary with more complex content maintained in DITA XML.

Converting Markdown to DITA

In cases where the Markdown input is a one-off contribution, members of the DITA authoring
team can use the Markdown file as raw material that is easily converted to DITA and enriched
with conditional processing attributes, conkeyrefs or other more complex semantics that have no
equivalent in limited formats like Markdown.

If you prefer to maintain this content in DITA in the future, you can generate DITA output by
passing the --format=dita option on the command line.

This converts all input files (both DITA XML and Markdown) to Normalized DITA. You can
then copy the generated DITA files from the output folder to your project and replace references
to the Markdown topics with their DITA equivalents.

20

Authoring formats

Preview support for Lightweight DITA
DITA-OT provides preview support for the authoring formats proposed for Lightweight
DITA, or “LwDITA”. The XDITA, MDITA and HDITA formats are alternative
representations of DITA content in XML, Markdown and HTML5.

Attention: Since Lightweight DITA has not yet been released as a formal specification, the
implementation for XDITA, MDITA and HDITA authoring formats is subject to change. Future
versions of DITA Open Toolkit will be updated as LwDITA evolves.

XDITA

XDITA is the LwDITA authoring format that uses XML to structure information. XDITA is
a subset of DITA, with new multimedia element types added to support interoperability with
HTML5. XDITA is designed for users who want to write DITA content but who do not want (or
need) the full power of DITA.

The XDITA parser included in the org.lwdita plug-in provides preliminary support for
XDITA maps and XDITA topics.

To apply XDITA-specific processing to topics in an XDITA map or a full DITA 1.3 map, set the
@format attribute on a <topicref> to xdita:

1 <map>
2 ··<topicref·href="xdita-topic.xml"·format="xdita"/>
3 </map>

Tip: For examples of cross-format content sharing between topics in XDITA, HDITA,
extended-profile MDITA, and DITA 1.3, see the LwDITA sample files in the DITA-OT
installation directory under plugins/org.oasis-open.xdita.v0_2_2/samples.

MDITA

MDITA is the LwDITA authoring format based on Markdown. It is designed for users who want
to write structured content with the minimum of overhead, but who also want to take advantage
of the reuse mechanisms associated with the DITA standard and the multi-channel publishing
afforded by standard DITA tooling.

Recent proposals for LwDITA include two profiles for authoring MDITA topics:

• The “Core profile” is based on GitHub-Flavored Markdown and includes elements that are
common to many other Markdown implementations.

• The “Extended profile” borrows additional features from other flavors of Markdown to
represent a broader range of DITA content with existing plain-text syntax conventions.

The MDITA parser included in the org.lwdita plug-in provides preliminary support for these
profiles and additional Markdown constructs as described in the MDITA syntax on page 355.

21

http://docs.oasis-open.org/dita/LwDITA/v1.0/cn01/LwDITA-v1.0-cn01.pdf
http://docs.oasis-open.org/dita/LwDITA/v1.0/cn01/LwDITA-v1.0-cn01.pdf
http://docs.oasis-open.org/dita/LwDITA/v1.0/cn01/LwDITA-v1.0-cn01.pdf
https://github.github.com/gfm/

DITA Open Toolkit 4.3

To apply the stricter LwDITA-specific processing to Markdown topics, set the @format
attribute to mdita:

1 <map>
2 ··<topicref·href="mdita-topic.md"·format="mdita"/>
3 </map>

In this case, the first paragraph in the topic will be treated as a short description, for example, and
additional metadata can be specified for the topic via a YAML front matter block.

Tip: For details on the differences in Chapter 34 Markdown formats on page 345, see
Markdown DITA syntax on page 345, MDITA syntax on page 355, and Format
comparison on page 362.

HDITA

HDITA is the LwDITA authoring format based on HTML5, which is intended to support
structured content authoring with tools designed for HTML authoring. HDITA also uses custom
data attributes to provide interoperability with DITA.

The HDITA parser included in the org.lwdita plug-in provides preliminary support for these
constructs.

To apply LwDITA-specific processing to HTML topics, set the @format attribute to hdita:

1 <map>
2 ··<topicref·href="hdita-topic.html"·format="hdita"/>
3 </map>

Attention: The HDITA map format is not yet supported. To include HDITA content, use an
XDITA map or a DITA 1.3 map.

Using conditional processing in MDITA and HDITA

When you set up conditional processing in MDITA and HDITA, use the @data-props
attribute in the element that will have the conditional processing applied. In the .ditaval file,
however, use the @props attribute.

Converting lightweight formats to DITA XML

When you add LwDITA topics to a DITA publication, the content is temporarily converted
to DITA in the background when generating other output formats like HTML or PDF, but the
source files remain unchanged.

If you prefer to maintain this content in DITA in the future, you can generate DITA output by
passing the --format=dita option on the command line.

This converts all input files (both LwDITA formats and DITA XML) to Normalized DITA.
You can then copy the generated DITA files from the output folder to your project and replace
references to the lightweight topics with their DITA equivalents.

22

Output formats

Chapter 3 Output formats

DITA Open Toolkit ships with several core transformations that convert DITA content
to different output formats. Additional formats are available from the plug-in registry at
dita-ot.org/plugins.

Tip: For information on how to install other formats, see Part 5 Extending DITA-OT with
plug-ins on page 135.

PDF.. 23
HTML5.. 23
Eclipse help... 24
HTML Help...24
Markdown..25
Normalized DITA..26
XHTML... 27

PDF
The pdf transformation generates output in Portable Document Format.

This transformation was originally created as a plug-in and maintained outside of the main
toolkit code. It was created as a more robust alternative to the demo PDF transformation in the
original toolkit, and thus was known as PDF2. The plug-in was bundled into the default toolkit
distribution with release 1.4.3.

To run the PDF transformation, set the transtype parameter to pdf, or pass the --
format=pdf option to the dita command line.

dita --input=input-file --format=pdf

where:

• input-file is the DITA map or DITA file that you want to process.

HTML5
The html5 transformation generates HTML5 output and a table of contents (TOC) file.

The HTML5 output is always associated with the default DITA-OT CSS file (commonltr.css
or commonrtl.css for right-to-left languages). You can use toolkit parameters to add
a custom style sheet that overrides the default styles, or generate a <nav> element with a
navigation TOC in topic pages.

23

https://www.dita-ot.org/plugins

DITA Open Toolkit 4.3

To run the HTML5 transformation, set the transtype parameter to html5, or pass the --
format=html5 option to the dita command line.

dita --input=input-file --format=html5

where:

• input-file is the DITA map or DITA file that you want to process.

Eclipse help
The eclipsehelp transformation generates XHTML output, CSS files, and the control
files that are needed for Eclipse help.

In addition to the XHTML output and CSS files, this transformation returns the following files,
where mapname is the name of the root map.

File name Description

plugin.xml Control file for the Eclipse plug-in

mapname.xml Table of contents

index.xml Index file

plugin.properties

META-INF/MANIFEST.MF

To run the Eclipse help transformation, set the transtype parameter to eclipsehelp, or
pass the --format=eclipsehelp option to the dita command line.

dita --input=input-file --format=eclipsehelp

where:

• input-file is the DITA map or DITA file that you want to process.

HTML Help
The htmlhelp transformation generates HTML output, CSS files, and the control files
that are needed to produce a Microsoft Compiled HTML Help (.chm) file.

In addition to the HTML output and CSS files, this transformation returns the following files,
where mapname is the name of the root map.

File name Description

mapname.hhc Table of contents

mapname.hhk Sorted index

mapname.hhp HTML Help project file

24

Output formats

File name Description

mapname.chm Compiled HTML Help file

Note: The compiled file is only generated if the
HTML Help Workshop is installed on the build
system.

To run the HTML Help transformation, set the transtype parameter to htmlhelp, or pass
the --format=htmlhelp option to the dita command line.

dita --input=input-file --format=htmlhelp

where:

• input-file is the DITA map or DITA file that you want to process.

Generating Markdown output
Along with Markdown input on page 19, DITA-OT provides three transformation types
to convert DITA content to Markdown, including the original syntax, GitHub-Flavored
Markdown, and GitBook.

The new output formats can be used to feed DITA content into Markdown-based publishing
systems or other workflows that lack the ability to process DITA XML.

Markdown output can be generated by passing one of the following transformation types to the
dita command with the --format option:

• To publish Markdown DITA files, use the markdown transtype.

• To generate GitHub-Flavored Markdown files, use the markdown_github transtype.

Note: Since the GitHub format does not support definition lists, they are converted to
unordered lists with bold terms. Attribute blocks with IDs, class names, and other custom
attributes are also omitted, as GitHub does not support Pandoc header attributes or PHP
Markdown Extra special attributes.

• To publish GitHub-Flavored Markdown and generate a SUMMARY.md table of contents file
for publication via GitBook or mdBook, use the markdown_gitbook transtype.

Run the dita command and set the value of the output --format option to the desired format,
for example:

dita --input=input-file --format=markdown

where:

• input-file is the DITA map or DITA file that you want to process.

25

https://github.github.com/gfm/
https://www.gitbook.com
https://rust-lang.github.io/mdBook/

DITA Open Toolkit 4.3

Attention: The MDITA format is not yet supported when generating output. To publish DITA
content to Markdown, use one of the formats listed above.

Normalized DITA
The dita transformation generates normalized topics and maps from DITA input. The
normalized output includes the results of DITA Open Toolkit pre-processing operations,
which resolve map references, keys, content references, code references and push
metadata back and forth between maps and topics.

In comparison to the source DITA files, the normalized DITA files are modified in the following
ways:

• References from one DITA map to another are resolved

• Map-based links, such as those generated by map hierarchy and relationship tables, are added
to the topics.

• Link text is resolved.

• Map attributes that cascade are made explicit on child elements.

• Map metadata such as index entries and copyrights are pushed into topics.

• Topic metadata such as navigation titles, link text and short descriptions are pulled from topics
into the map.

• XML comments are removed.

Applications

Normalized output may be useful in situations where post-processing of DITA content is
required, but the downstream systems are limited in their ability to resolve DITA references.

Tip: You can also use the normalized DITA transformation to convert Markdown or
Lightweight DITA formats to DITA XML. You can then copy the generated DITA files from
the output folder to your project and replace references to the lightweight topics with their
XML equivalents.

Generating normalized DITA output

Run the dita command and set the value of the output --format option to dita:

dita --input=input-file --format=dita

where:

• input-file is the DITA map or DITA file that you want to process.

26

Output formats

XHTML
The xhtml transformation generates XHTML output and a table of contents (TOC) file.
This was the first transformation created for DITA Open Toolkit, and originally served as
the basis for all HTML-based transformations.

The XHTML output is always associated with the default DITA-OT CSS file
(commonltr.css or commonrtl.css for right-to-left languages). You can use toolkit
parameters to add a custom style sheet to override the default styles.

To run the XHTML transformation, set the transtype parameter to xhtml, or pass the --
format=xhtml option to the dita command line.

dita --input=input-file --format=xhtml

where:

• input-file is the DITA map or DITA file that you want to process.

27

DITA Open Toolkit 4.3

28

Part 2 Installing DITA Open Toolkit

The DITA-OT distribution package can be installed on Linux, macOS, and Windows. It
contains everything that you need to run the toolkit except for Java.

Before you begin

• Ensure that you have a Java Runtime Environment (JRE) or Java Development Kit (JDK).

DITA-OT 4.3 is designed to run on Java version 17 or later and built and tested with the Open
Java Development Kit (OpenJDK). Compatible Java distributions are available from multiple
sources:

• You can download Oracle distributions from oracle.com/java under commercial license.

• Eclipse Temurin is the free OpenJDK distribution available from adoptium.net.

• Free OpenJDK distributions are also provided by Amazon Corretto, Azul Zulu, and Red
Hat.

• Java versions are also available via package managers such as Chocolatey, Homebrew, or
SDKMAN!

• If you want to generate HTML Help, ensure that you have HTML Help Workshop installed.

You can download the Help Workshop from web.archive.org.

Procedure

1. Download the dita-ot-4.3.2.zip package from the project website at dita-ot.org/
download.

2. Extract the contents of the package to the directory where you want to install DITA-OT.

Note: The documentation refers to this location as the DITA-OT installation directory, or
dita-ot-dir.

3. Add the absolute path for the bin folder of the DITA-OT installation directory to the PATH
environment variable.

Tip: This defines the necessary environment variable that allows the dita command to be
run from any location on the file system without typing the path to the command.

Chapter 4 Prerequisite software..31
Chapter 5 Checking the version... 33
Chapter 6 First build... 35
Chapter 7 Installing via Homebrew..37

29

https://www.oracle.com/java/technologies/downloads/
https://adoptium.net/temurin/releases/?version=17
https://aws.amazon.com/corretto/
https://www.azul.com/downloads/
https://developers.redhat.com/products/openjdk/download
https://developers.redhat.com/products/openjdk/download
https://chocolatey.org/
https://brew.sh
https://sdkman.io/jdks
http://web.archive.org/web/20160201063255/http://download.microsoft.com/download/0/A/9/0A939EF6-E31C-430F-A3DF-DFAE7960D564/htmlhelp.exe
https://www.dita-ot.org/download
https://www.dita-ot.org/download
https://en.wikipedia.org/wiki/PATH_(variable)
https://en.wikipedia.org/wiki/PATH_(variable)

Installing DITA Open Toolkit

30

Prerequisite software

Chapter 4 Prerequisite software

The software that DITA-OT requires depends on the output formats you want to use.

Software required for core DITA-OT processing

DITA-OT requires the following software applications:

Java Development Kit (JDK) or Java
Runtime Environment (JRE)

DITA-OT 4.3 is designed to run on Java
version 17 or later and built and tested with
the Open Java Development Kit (OpenJDK).
Compatible Java distributions are available
from multiple sources:

• You can download Oracle distributions
from oracle.com/java under commercial
license.

• Eclipse Temurin is the free OpenJDK
distribution available from adoptium.net.

• Free OpenJDK distributions are also
provided by Amazon Corretto, Azul Zulu,
and Red Hat.

• Java versions are also available via package
managers such as Chocolatey, Homebrew,
or SDKMAN!

Note: This is the only prerequisite that you
need to install. All other required software
is provided in the distribution package,
including Apache Ant™ 1.10.15, Saxon
12.7, and ICU for Java 77.1.

Software required for specific transformations

Depending on the type of output that you want to generate, you might need the following
applications:

HTML Help Workshop Microsoft no longer provides the software
required for generating Compiled HTML Help
(.chm) files. You can download an archived
copy of the HTML Help Workshop from
the Internet Archive’s Wayback Machine at
web.archive.org.

XSL-FO processor Required for generating PDF output. Apache™

FOP (Formatting Objects Processor) 2.11

31

https://www.oracle.com/java/technologies/downloads/
https://adoptium.net/temurin/releases/?version=17
https://aws.amazon.com/corretto/
https://www.azul.com/downloads/
https://developers.redhat.com/products/openjdk/download
https://chocolatey.org/
https://brew.sh
https://sdkman.io/jdks
https://ant.apache.org
http://saxon.sourceforge.net
http://site.icu-project.org/download
http://web.archive.org/web/20160201063255/http://download.microsoft.com/download/0/A/9/0A939EF6-E31C-430F-A3DF-DFAE7960D564/htmlhelp.exe

Installing DITA Open Toolkit

is included in the distribution package.
You can download other versions from
xmlgraphics.apache.org/fop. You can also use
commercial FO processors such as Antenna
House Formatter or RenderX XEP.

32

https://xmlgraphics.apache.org/fop/download.html

Checking the DITA-OT version number

Chapter 5 Checking the DITA-OT version number

You can determine the DITA Open Toolkit version number from a command prompt.

Procedure

1. Open a command prompt or terminal session.

2. Issue the following command:

dita --version

Results

The DITA-OT version number appears on the console:

DITA-OT version 4.3.2

33

Installing DITA Open Toolkit

34

First build with the dita command

Chapter 6 First build with the dita command

You can publish output using the dita command-line tool. Build parameters can be
specified on the command line, with .properties files, or in project files that define
multiple deliverables.

About this task

The DITA-OT client is a command-line tool with no graphical user interface. To verify that
your installation works correctly, you can build the HTML version of the documentation you are
reading now.

Procedure

1. Open a terminal window by typing the following in the search bar:

Option Description

Linux or macOS Type Terminal.

Windows Type Command Prompt.

2. Change directories to the docsrc/samples subfolder of the DITA-OT installation
directory:

cd dita-ot-dir/docsrc/samples

3. At the command-line prompt, enter the following command:

dita --project=project-files/html.xml

The HTML version of the documentation is generated in the docsrc/samples/out
folder.

What to do next

Most builds require you to specify more options than are described in this topic. For more
information, see Publishing with the dita command.

35

Installing DITA Open Toolkit

36

Installing DITA-OT via Homebrew

Chapter 7 Installing DITA-OT via Homebrew

An alternative installation method can be used to install DITA-OT via Homebrew, one of
the most popular open-source package managers on macOS and Linux.

Before you begin

The steps below assume you have already installed Homebrew according to the instructions at
brew.sh.

Tip: Verify that your PATH environment variable begins with the bin subfolder of

the Homebrew installation directory 1 to ensure that Homebrew-installed software takes
precedence over any programs of the same name elsewhere on the system.

Procedure

1. Update Homebrew to make sure the latest package formulas are available on your system:

$ brew update
Already up-to-date.

Homebrew responds with a list of any new or updated formulæ.

2. Optional: Check the version of DITA-OT that is available from Homebrew:

$ brew info dita-ot
dita-ot: stable 4.3.2
DITA Open Toolkit is an implementation of the OASIS DITA specification
https://www.dita-ot.org/
/opt/homebrew/Cellar/dita-ot/4.3.2 (number of files, package size) *
 Poured from bottle using the formulae.brew.sh API on YYYY-MM-DD at hh:mm:ss
From: https://github.com/Homebrew/homebrew-core/blob/master/Formula/dita-ot.rb
License: Apache-2.0
==> Dependencies
Required: openjdk #

The version of the DITA-OT formula is shown, along with basic information on the package.

3. Install the dita-ot package:

$ brew install dita-ot
Downloading…

Homebrew will automatically download the latest version of the toolkit, install it in a
subfolder of the local package Cellar and symlink the dita command to the bin subfolder
of the Homebrew installation directory.

1 Homebrew’s default installation location depends on the operating system architecture:

• /usr/local on macOS Intel

• /opt/homebrew on macOS ARM

• /home/linuxbrew/.linuxbrew on Linux

37

https://brew.sh
https://brew.sh
https://brew.sh
https://en.wikipedia.org/wiki/PATH_(variable)

Installing DITA Open Toolkit

4. Optional: Verify the installation:

$ which dita
/opt/homebrew/bin/dita

The response confirms that the system will use the Homebrew-installed version of DITA-OT.

5. Optional: Check the DITA-OT version number:

$ dita --version
DITA-OT version 4.3.2

The DITA-OT version number appears on the console.

Results

You can now run the dita command to transform DITA content.

38

Part 3 Publishing DITA content

You can use the dita command, Ant, or the Java API to publish DITA content to other
formats, or build output from a containerized environment such as Docker or GitHub
Actions.

Chapter 8 Using the dita command...41
Chapter 9 Using Docker images...59
Chapter 10 Using GitHub Actions..63
Chapter 11 Using Ant... 67
Chapter 12 Using the Java API.. 71

39

Publishing DITA content

40

Publishing with the dita command

Chapter 8 Publishing with the dita command

You can publish output using the dita command-line tool. Build parameters can be
specified on the command line, with .properties files, or in project files that define
multiple deliverables.

Procedure

At the command-line prompt, enter the following command:

dita --input=input-file --format=format [options]

where:

• input-file is the DITA map or DITA file that you want to process.

• format is the output format (transformation type). This argument corresponds to the
common parameter transtype on page 87. Use the same values as for the transtype
build parameter, for example html5 or pdf.

You can create plug-ins to add new output formats; by default, the following values are
available:

• dita

• eclipsehelp

• html5

• htmlhelp

• markdown, markdown_gitbook, and markdown_github

• pdf

• xhtml

Tip: See Chapter 3 Output formats on page 23 for sample command line syntax and more
information on each transformation.

• [options] include the following optional build parameters:
--debug
-d

Debug logging prints considerably more additional information. The debug log
includes all information from the verbose log, plus details on Java classes, additional
Ant properties and overrides, pre-processing filters, parameters, and stages, and the
complete build sequence. Debug logging requires additional resources and can slow
down the build process, so it should only be enabled when further details are required
to diagnose problems.

--filter=files

Specifies filter file(s) used to include, exclude, or flag content. Relative paths are
resolved against the current directory and internally converted to absolute paths.

41

Publishing DITA content

Note:

To specify multiple filter files, use the system path separator character to delimit
individual file paths (semicolon ‘;’ on Windows, and colon ‘:’ on macOS and
Linux) and wrap the value in quotes:

--
filter="filter1.ditaval;filter2.ditaval;filter3.ditaval"

As of DITA-OT 3.6, the --filter option can also be passed multiple times:

--filter=filter1.ditaval --filter=filter2.ditaval --
filter=filter3.ditaval

DITAVAL files are evaluated in the order specified, so conditions specified in the
first file take precedence over matching conditions specified in later files, just as
conditions at the start of a DITAVAL document take precedence over matching
conditions later in the same document.

--help
-h

Print a list of available arguments, options, and subcommands.

--logfile=file
-l file

Write logging messages to a file.

Note: If processing is successful, nothing is written to the log, so the file will be
empty if there are no errors or warnings. To include informational messages in the
log, add the --verbose option (or -v).

--no-color

By default, DITA-OT prints certain log messages to the console in color. In terminal
environments that do not support colored output, the ANSI color escape codes will
be shown instead. To deactivate colored output, pass the --no-color option to the
dita command, or set the TERM=dumb or NO_COLOR environment variables.

--output=dir
-o dir

Specifies the path of the output directory; the path can be absolute or relative to the
current directory.

This option corresponds to the common parameter output.dir on page 86.

By default, the output is written to the out subdirectory of the current directory.

--parameter=value
-Dparameter=value

Specify a value for a DITA-OT or Ant build parameter.

42

Publishing with the dita command

The GNU-style --parameter=value form is only available for parameters that are
configured in the plug-in configuration file; the Java-style -D form can also be used to
specify additional non-configured parameters or set system properties.

Parameters not implemented by the specified transformation type or referenced in a
.properties file are ignored.

Tip: If you are building in different environments where the location of the input
files is not consistent, set args.input.dir with the dita command and
reference its value with ${args.input.dir} in your .properties file.

--propertyfile=file

Use build parameters defined in the referenced .properties file.

Build parameters specified on the command line override those set in the
.properties file.

--repeat=N

Repeat the transformation N number of times.

This option can be used by plug-in developers to measure performance. To run a
conversion five times, for example, use --repeat=5. The duration of each execution
will appear in the console when the final transformation is complete.

$ dita --input=path/to/sample.ditamap --format=html5 \
 --repeat=5
1 11281ms
2 4132ms
3 3690ms
4 4337ms
5 3634ms

--resource=file
-r file

Specifies resource files.

This argument corresponds to the common parameter args.resources on page 83.

Resource files can be used to convert partial documentation sets by processing input
with additional information.

For example, to process a single topic file with a map that contains key definitions, use
a command like this:

dita --input=topic.dita --resource=keys.ditamap --format=html5

To convert a chapter map to HTML5 and insert related links from relationship tables in
a separate map, use:

dita --input=chapter.ditamap --resource=reltables.ditamap --format=html5

--temp=dir
-t dir

Specifies the location of the temporary directory.

43

Publishing DITA content

This option corresponds to the common parameter dita.temp.dir on page 85.

The temporary directory is where DITA-OT writes intermediate files that are generated
during the transformation process.

--theme=file

Publish PDF output with a theme configuration file.

For more information, see PDF themes on page 114.

--verbose
-v

Verbose logging prints additional information to the console, including directory
settings, effective values for Ant properties, input/output files, and informational
messages to assist in troubleshooting.

If processing is successful, nothing is printed in the terminal window. The built output is written
to the specified output directory (by default, in the out subdirectory of the current directory).

Example

For example, from dita-ot-dir/docsrc, run:

dita --input=userguide.ditamap --format=html5 \
 --output=out/docs-html5 \
 --args.input.dir=/absolute/path/to/dita-ot-dir/docsrc \
 --propertyfile=properties/docs-build-html5.properties

This builds userguide.ditamap to HTML5 output in out/docs-html5 using
the following additional parameters specified in the properties/docs-build-
html5.properties file:

 1 #·Copy·the·custom·.css·file·to·the·output·directory:
 2 args.copycss·=·yes
 3

 4 #·Custom·.css·file·used·to·style·output:
 5 args.css·=·dita-ot-doc.css
 6

 7 #·Location·of·the·copied·.css·file·relative·to·the·output:
 8 args.csspath·=·css
 9

10 #·Directory·that·contains·the·custom·.css·file:
11 args.cssroot·=·${args.input.dir}/resources
12

13 #·Generate·headings·for·sections·within·task·topics:
14 args.gen.task.lbl·=·YES
15

16 #·File·that·contains·the·running·header·content:
17 args.hdr·=·${args.input.dir}/resources/header.xml
18

19 #·Which·related·links·to·include·in·the·output
20 args.rellinks·=·noparent
21

22 #·Skip·Table·of·Contents·file·generation:
23 html5.toc.generate·=·no
24

25 #·Generate·a·partial·navigation·TOC·in·topic·pages:
26 nav-toc·=·partial

44

Publishing with the dita command

What to do next

Usually, you will want to specify a set of reusable build parameters in a .properties file, or
or create a project file that defines multiple deliverables.

Using a properties file...45
Migrating Ant builds...46
Using a project file... 49

Setting parameters with .properties files
DITA builds usually require a set of parameters that don’t change frequently. You can
define these settings in a .properties file, and reference it when building output
with the dita command. You can override any of the properties by specifying them as
command-line arguments.

About .properties files

A .properties file is a text file that enumerates one or more name-value pairs, one per line,
in the format name = value. The .properties filename extension is customarily used, but
is not required.

• Lines beginning with the # character are comments.

• Properties specified as arguments of the dita command override those set in
.properties files.

Restriction: For this reason, args.input and transtype can’t be set in the
.properties file.

• If you specify the same property more than once, the last instance is used.

• Properties not used by the selected transformation type are ignored.

• Properties can reference other property values defined elsewhere in the .properties file or
passed by the dita command. Use the Ant ${property.name} syntax.

• You can set properties not only for the default DITA-OT transformation types, but also for
custom plugins.

Procedure

1. Create your .properties file.

Tip: Copy dita-ot-dir/docsrc/samples/properties/
template.properties; this template describes each of the properties you can set.

45

Publishing DITA content

For example:

 1 #·Directory·that·contains·the·custom·.css·file:
 2 args.cssroot·=·${args.input.dir}/css/
 3

 4 #·Custom·.css·file·used·to·style·output:
 5 args.css·=·style.css
 6

 7 #·Copy·the·custom·.css·file·to·the·output·directory:
 8 args.copycss·=·yes
 9

10 #·Location·of·the·copied·.css·file·relative·to·the·output:
11 args.csspath·=·branding
12

13 #·Generate·a·full·navigation·TOC·in·topic·pages:
14 nav-toc·=·full

2. Reference your .properties file with the dita command when building your output.

dita --input=my.ditamap --format=html5 --propertyfile=my.properties

3. If needed, pass additional arguments to the dita command to override specific build
parameters.

For example, to build output once with <draft> and <required-cleanup> content:

dita --input=my.ditamap --format=html5 --propertyfile=my.properties \
 --args.draft=yes

Tip: If you are building in different environments where the location of the input files is
not consistent, set args.input.dir with the dita command and reference its value
with ${args.input.dir} in your .properties file.

Migrating Ant builds to the dita command
DITA-OT still supports Ant builds, but the dita command offers a simpler command
interface, sets all required environment variables, and allows you to run DITA-OT
without setting up anything beforehand.

About this task

Building output with the dita command is often easier than using Ant. In particular, you can
use .properties files to specify sets of parameters for each build, or create a project file that
defines multiple deliverables at once.

You can include the dita command in shell scripts to perform multiple builds.

Tip: Add the absolute path for the bin folder of the DITA-OT installation directory to the
PATH environment variable to run the dita command from any location on the file system
without typing the path.

46

https://en.wikipedia.org/wiki/PATH_(variable)

Publishing with the dita command

Procedure

1. In your Ant build file, identify the properties set in each build target.

Note: Some build parameters might be specified as properties of the project as a whole.
You can refer to a build log to see a list of all properties that were set for the build.

2. Create a .properties file for each build and specify the needed build parameters, one per
line, in the format name = value.

3. Use the dita command to perform each build, referencing your .properties with the --
propertyfile=file option.

Example: Ant build

Prior to DITA-OT 2.0, an Ant build like this was typically used to define the properties for each
target.

Sample build file: build-chm-pdf.xml

 1 <?xml·version="1.0"·encoding="UTF-8"?>
 2 <project·name="build-chm-pdf"·default="all"·basedir=".">
 3 ··<property·name="dita.dir"·location="${basedir}/../../.."/>
 4 ··<target·name="all"·description="build·CHM·and·PDF"·depends="chm,pdf"/>
 5 ··<target·name="chm"·description="build·CHM">
 6 ····<ant·antfile="${dita.dir}/build.xml">
 7 ······<property·name="args.input"·location="../sequence.ditamap"/>
 8 ······<property·name="transtype"·value="htmlhelp"/>
 9 ······<property·name="output.dir"·location="../out/chm"/>
10 ······<property·name="args.gen.task.lbl"·value="YES"/>
11 ····</ant>
12 ··</target>
13 ··<target·name="pdf"·description="build·PDF">
14 ····<ant·antfile="${dita.dir}/build.xml">
15 ······<property·name="args.input"·location="../taskbook.ditamap"/>
16 ······<property·name="transtype"·value="pdf"/>
17 ······<property·name="output.dir"·location="../out/pdf"/>
18 ······<property·name="args.gen.task.lbl"·value="YES"/>
19 ······<property·name="args.rellinks"·value="nofamily"/>
20 ····</ant>
21 ··</target>
22 </project>

Example: .properties files with dita command

The following .properties files and dita commands are equivalent to the example Ant
build.

Sample .properties file: dita-ot-dir/docsrc/samples/properties/
chm.properties

1 output.dir·=·out/chm
2 args.gen.task.lbl·=·YES

Sample .properties file: dita-ot-dir/docsrc/samples/properties/
pdf.properties

1 output.dir·=·out/pdf
2 args.gen.task.lbl·=·YES
3 args.rellinks·=·nofamily

47

Publishing DITA content

Sample dita command sequence:

dita --input=sequence.ditamap --format=htmlhelp \
 --propertyfile=properties/chm.properties
dita --input=taskbook.ditamap --format=pdf \
 --propertyfile=properties/pdf.properties

Example: Call the dita command from an Ant build

In some cases, you might still want to use an Ant build to implement some pre- or post-
processing steps, but also want the convenience of using the dita command with
.properties files to define the parameters for each build. This can be accomplished with
Ant’s <exec> task.

This example defines a <dita-cmd> Ant macro:

 1 <macrodef·name="dita-cmd">
 2 ··<attribute·name="input"/>
 3 ··<attribute·name="format"/>
 4 ··<attribute·name="propertyfile"/>
 5 ··<sequential>
 6 ····<!--·For·Unix·run·the·DITA·executable-->
 7 ····<exec·taskname="dita-cmd"·executable="${dita.dir}/bin/
dita"·osfamily="unix"·failonerror="true">
 8 ······<arg·value="--input"/>
 9 ······<arg·value="@{input}"/>
10 ······<arg·value="--format"/>
11 ······<arg·value="@{format}"/>
12 ······<arg·value="--propertyfile"/>
13 ······<arg·value="@{propertyfile}"/>
14 ····</exec>
15 ····<!--·For·Windows·run·DITA·from·a·DOS·command·-->
16 ····<exec·taskname="dita-cmd"·dir="${dita.dir}/
bin"·executable="cmd"·osfamily="windows"·failonerror="true">
17 ······<arg·value="/C"/>
18 ······<arg·value="dita·--input·@{input}·--format·@{format}·--
propertyfile=@{propertyfile}"/>
19 ····</exec>
20 ··</sequential>
21 </macrodef>

You can use this macro in your Ant build to call the dita command and pass the input,
format and propertyfile parameters as follows:

<dita-cmd input="sample.ditamap" format="pdf" propertyfile="sample.properties"/>

This approach allows you to use Ant builds to perform additional tasks at build time while
allowing the dita command to set the classpath and ensure that all necessary JAR libraries are
available.

Note: The attributes defined in the Ant macro are required and must be supplied each
time the task is run. To set optional parameters in one build (but not another), use different
.properties files for each build.

48

Publishing with the dita command

Sample build file: build-chm-pdf-hybrid.xml

 1 <?xml·version="1.0"·encoding="UTF-8"?>
 2 <project·name="build-chm-pdf-hybrid"·default="all"·basedir=".">
 3 ··<description>An·Ant·build·that·calls·the·dita·command</description>
 4 ··<include·file="dita-cmd.xml"/><!--·defines·the·<dita-cmd>·macro·-->
 5 ··<target·name="all"·depends="pre,main,post"/>
 6 ··<target·name="pre">
 7 ····<description>Pre-processing·steps</description>
 8 ··</target>
 9 ··<target·name="main">
10 ····<description>Build·the·CHM·and·PDF·with·the·dita·command</description>
11 ····<property·name="absolute.path.base"·location="../"/>
12 ····<dita-cmd
13 ······input="${absolute.path.base}/sequence.ditamap"
14 ······format="htmlhelp"
15 ······propertyfile="${absolute.path.base}/properties/chm.properties"
16 ····/>
17 ····<dita-cmd
18 ······input="${absolute.path.base}/taskbook.ditamap"
19 ······format="pdf"
20 ······propertyfile="${absolute.path.base}/properties/pdf.properties"
21 ····/>
22 ··</target>
23 ··<target·name="post">
24 ····<description>Postprocessing·steps</description>
25 ··</target>
26 </project>

Publishing with project files
DITA-OT project files allow you to publish multiple deliverables at once. Each
deliverable specifies a re-usable source context that groups the maps or topics you
want to publish, an output folder, and a publication format (such as HTML, or
PDF) with transformation parameters.

About project files

Project files may be defined in one of three formats: XML, JSON, or YAML. The XML format
can be validated with a RELAX NG schema provided in the resources folder of the DITA-OT
installation (project.rnc).

Note: The XML project file format is the normative version provided for interoperability
with existing XML-based toolchains. The JSON and YAML versions are alternative compact
formats that are easier to read and write, but otherwise equivalent to the XML syntax.

Whereas .properties files can only be used to set parameters, project files go further,
allowing you to define multiple deliverables with separate input files and output folders and
formats for each publication. A project file can also refer to other project files with include
statements. Deliverables, contexts, and publications can either be entirely self-contained, or
reference others with idref attributes, so you can re-use common configuration structures
across (and within) projects.

Another advantage of project files over .properties files is that they allow you to specify
paths relative to the project file, even for parameters that require absolute paths, such as:

• args.cssroot

49

https://json.org
https://yaml.org

Publishing DITA content

• args.ftr

• args.hdf

• args.hdr

Syntax

Though the exact syntax differs slightly, the basic structure of project files is similar in all
supported formats.

The following settings can be defined for each deliverable:

• a source context that may include:

• an id that allows you to refer to this context from other contexts or projects

• an idref that refers to another context

• a series of input files (the DITA maps or topics you want to publish)

• a profile with a series of DITAVAL files used to filter the content of all publications in
the deliverable

• an output location (relative to the CLI --output directory)

• a publication type that defines:

• an id that allows you to refer to this publication from other publications or projects

• an idref that refers to another publication

• a transtype that specifies an output format (such as HTML, or PDF)

• a series of param elements, with any parameters to set for this transformation type,
specified via name and either href, path, or value

• a profile with any additional DITAVAL files used to filter the content of the
publication (in addition to any filters defined in the map context)

Parameters defined in a publication can override those in other publications that are referenced
via idref.

 1 <project·xmlns="https://www.dita-ot.org/project">
 2 ··<publication·transtype="html5"·id="common-html5">
 3 ····<param·name="nav-toc"·value="partial"/>
 4 ··</publication>
 5 ··<deliverable>
 6 ····<context>
 7 ······<input·href="root.ditamap"/>
 8 ····</context>
 9 ····<output·href="./out"/>
10 ····<publication·idref="common-html5">
11 ······<param·name="nav-toc"·value="full"/
>·<!--·override·common·HTML·publication·-->
12 ····</publication>
13 ··</deliverable>
14 </project>

Figure 2: Sample project file with publication parameter overrides: dita-ot-dir/docsrc/samples/
project-files/param-override.xml

50

Publishing with the dita command

Tip:

• Use href for web addresses and other resources that should resolve to an absolute URI.
Relative references are resolved using the project file as a base directory.

• Use path for parameters that require an absolute value, like args.cssroot. Paths may
be defined relative to the project file, but are always expanded to an absolute system path.

• Use value to define strings and relative values for properties like args.csspath,
which is used to describe a relative path in the output folder. String values are passed as is.

Project filtering

As of DITA-OT 4.0, you can add DITAVAL filters to both contexts and publications. If a set of
filter conditions applies to most or all of your deliverables, then it should probably be defined in a
publication, rather than in contexts.

For example, consider a case with 100 maps that have multiple @product variants, but every
one of which is published in two @audience conditions (internal or external). If @audience
is varied in publications, the structure is orthogonal and well-organized:

Context 1

map2.ditamap
product-A.ditaval

Context 2-A

map1.ditamap

map2.ditamap
product-B.ditaval

Context 2-B

Context 3

map3.ditamap

Context 100

map100.ditamap

Publication PDF-internal

audience-internal.ditaval

Publication PDF-external

audience-external.ditaval

Deliverable 1-internal-pdf

1-internal.pdf

Deliverable 1-external-pdf

1-external.pdf

Deliverable 2-A-internal-pdf

2-A-internal.pdf

Deliverable 2-A-external-pdf

2-A-external.pdf

Deliverable 2-B-internal-pdf

2-B-internal.pdf

Deliverable 2-B-external-pdf

2-B-external.pdf

Deliverable 3-internal-pdf

3-internal.pdf

Deliverable 3-external-pdf

3-external.pdf

Deliverable 100-internal-pdf

100-internal.pdf

Deliverable 100-external-pdf

100-external.pdf

Figure 3: Sample filtering scenario

Procedure

1. Create a project file to define the deliverables in your publication project.

51

Publishing DITA content

For example:

 1 <?xml·version="1.0"·encoding="UTF-8"?>
 2 <?xml-model·href="https://www.dita-ot.org/rng/project.rnc"·type="application/
relax-ng-compact-syntax"?>
 3 <project·xmlns="https://www.dita-ot.org/project">
 4 ··<deliverable·id="pdf">
 5 ····<context·name="User·Guide">
 6 ······<input·href="../../userguide-book.ditamap"/>
 7 ····</context>
 8 ····<output·href="."/>
 9 ····<publication·transtype="pdf2">
10 ······<param·name="args.chapter.layout"·value="BASIC"/>
11 ······<param·name="args.gen.task.lbl"·value="YES"/>
12 ······<param·name="include.rellinks"·value="#default·external"/>
13 ······<param·name="outputFile.base"·value="userguide"/>
14 ······<param·name="theme"·path="../themes/dita-ot-docs-theme.yaml"/>
15 ······<profile>
16 ········<ditaval·href="../../resources/pdf.ditaval"/>
17 ······</profile>
18 ····</publication>
19 ··</deliverable>
20 </project>

Figure 4: Sample project file for PDF output: dita-ot-dir/docsrc/samples/project-files/
pdf.xml

2. Pass your project file to the dita command to build output.

dita --project=pdf.xml

3. Optional: If needed, pass additional arguments to the dita command to override specific
build parameters.

For example, to build output once with <draft> and <required-cleanup> content:

dita --project=pdf.xml --args.draft=yes

4. Optional: If your project contains multiple deliverables, you can pass the --deliverable
option to generate output for a single deliverable ID.

dita --project=all.xml --deliverable=htmlhelp

Sample XML project files

DITA-OT includes sample XML project files that can be used to define a publication
project. The XML format can be validated with a RELAX NG schema provided in the
resources folder of the DITA-OT installation (project.rnc).

Project files can be designed in a modular fashion to create reusable configuration structures that
allow you to define settings in one file and refer to them in other projects to publish multiple
deliverables at once.

52

Publishing with the dita command

For example, dita-ot-dir/docsrc/samples/project-files/html.xml defines a
single HTML deliverable.

 1 <?xml·version="1.0"·encoding="UTF-8"?>
 2 <?xml-model·href="https://www.dita-ot.org/rng/project.rnc"·type="application/relax-
ng-compact-syntax"?>
 3 <project·xmlns="https://www.dita-ot.org/project">
 4 ··<include·href="common.xml"/>
 5 ··<deliverable·name="HTML5"·id="html">
 6 ····<context·idref="html"/>
 7 ····<output·href="."/>
 8 ····<publication·transtype="html5">
 9 ······<param·name="args.copycss"·value="yes"/>
10 ······<param·name="args.css"·value="dita-ot-doc.css"/>
11 ······<param·name="args.csspath"·value="css"/>
12 ······<param·name="args.cssroot"·path="../../resources"/>
13 ······<param·name="args.gen.task.lbl"·value="YES"/>
14 ······<param·name="args.hdr"·href="../../resources/header.xml"/>
15 ······<param·name="args.rellinks"·value="noparent"/>
16 ······<param·name="html5.toc.generate"·value="no"/>
17 ······<param·name="nav-toc"·value="partial"/>
18 ····</publication>
19 ··</deliverable>
20 </project>

Figure 5: Sample project file for HTML output

This file can be used to generate the HTML version of the DITA-OT documentation by running
the following command from the docsrc folder of the DITA-OT installation directory:

dita --project=samples/project-files/html.xml

The project file for HTML output imports the common html context from a shared
project context defined in the dita-ot-dir/docsrc/samples/project-files/
common.xml file, which includes the input map file and the DITAVAL file used to filter the
output.

 1 <?xml·version="1.0"·encoding="UTF-8"?>
 2 <?xml-model·href="https://www.dita-ot.org/rng/project.rnc"·type="application/relax-
ng-compact-syntax"?>
 3 <project·xmlns="https://www.dita-ot.org/project">
 4 ··<context·id="html"·name="HTML">
 5 ····<input·href="../../userguide.ditamap"/>
 6 ····<profile>
 7 ······<ditaval·href="../../resources/html.ditaval"/>
 8 ····</profile>
 9 ··</context>
10 </project>

Figure 6: Sample shared context for HTML-based output

53

Publishing DITA content

The same common html context is also referenced in the project file for HTMLHelp output, as
illustrated in dita-ot-dir/docsrc/samples/project-files/htmlhelp.xml.

 1 <?xml·version="1.0"·encoding="UTF-8"?>
 2 <?xml-model·href="https://www.dita-ot.org/rng/project.rnc"·type="application/relax-
ng-compact-syntax"?>
 3 <project·xmlns="https://www.dita-ot.org/project">
 4 ··<deliverable·name="HTMLHelp"·id="htmlhelp">
 5 ····<context·idref="html"/>
 6 ····<output·href="htmlhelp"/>
 7 ····<publication·transtype="htmlhelp">
 8 ······<param·name="args.copycss"·value="yes"/>
 9 ······<param·name="args.css"·value="dita-ot-doc.css"/>
10 ······<param·name="args.csspath"·value="css"/>
11 ······<param·name="args.cssroot"·path="../../resources"/>
12 ······<param·name="args.gen.task.lbl"·value="YES"/>
13 ····</publication>
14 ··</deliverable>
15 </project>

Figure 7: Sample project file for HTMLHelp output

The dita-ot-dir/docsrc/samples/project-files/pdf.xml file defines a single
PDF deliverable.

 1 <?xml·version="1.0"·encoding="UTF-8"?>
 2 <?xml-model·href="https://www.dita-ot.org/rng/project.rnc"·type="application/relax-
ng-compact-syntax"?>
 3 <project·xmlns="https://www.dita-ot.org/project">
 4 ··<deliverable·id="pdf">
 5 ····<context·name="User·Guide">
 6 ······<input·href="../../userguide-book.ditamap"/>
 7 ····</context>
 8 ····<output·href="."/>
 9 ····<publication·transtype="pdf2">
10 ······<param·name="args.chapter.layout"·value="BASIC"/>
11 ······<param·name="args.gen.task.lbl"·value="YES"/>
12 ······<param·name="include.rellinks"·value="#default·external"/>
13 ······<param·name="outputFile.base"·value="userguide"/>
14 ······<param·name="theme"·path="../themes/dita-ot-docs-theme.yaml"/>
15 ······<profile>
16 ········<ditaval·href="../../resources/pdf.ditaval"/>
17 ······</profile>
18 ····</publication>
19 ··</deliverable>
20 </project>

Figure 8: Sample project file for PDF output

This file can be used to generate the PDF version of the DITA-OT documentation by running the
following command from the docsrc folder of the DITA-OT installation directory:

dita --project=samples/project-files/pdf.xml

The dita-ot-dir/docsrc/samples/project-files/distribution-docs.xml
file includes both the HTML and PDF projects as follows:

<project·xmlns="https://www.dita-ot.org/project">
··<include·href="html.xml"/>
··<include·href="pdf.xml"/>
</project>

54

Publishing with the dita command

To build both the HTML and PDF versions of the documentation as included in the distribution
package, run the following command from the docsrc folder of the DITA-OT installation
directory:

dita --project=samples/project-files/distribution-docs.xml

The dita-ot-dir/docsrc/samples/project-files/all.xml file includes all
three project deliverables as follows:

<project·xmlns="https://www.dita-ot.org/project">
··<include·href="html.xml"/>
··<include·href="htmlhelp.xml"/>
··<include·href="pdf.xml"/>
</project>

Sample JSON project files

DITA-OT includes sample project files in JSON format that can be used to define a
publication project. Like the XML project samples, the sample JSON files illustrate how
deliverables can be described for use in publication projects. The JSON samples are
functionally equivalent to their XML and YAML counterparts, with minor adaptations to
JSON file syntax.

Project files can be designed in a modular fashion to create reusable configuration structures that
allow you to define settings in one file and refer to them in other projects to publish multiple
deliverables at once.

55

https://json.org

Publishing DITA content

For example, dita-ot-dir/docsrc/samples/project-files/html.json defines
a single HTML deliverable.

 1 {
 2 ··"includes":·["common.json"],
 3 ··"deliverables":·[
 4 ····{
 5 ······"name":·"HTML5",
 6 ······"context":·{"idref":·"html"},
 7 ······"output":·".",
 8 ······"publication":·{
 9 ········"transtype":·"html5",
10 ········"params":·[
11 ··········{
12 ············"name":·"args.copycss",
13 ············"value":·"yes"
14 ··········},
15 ··········{
16 ············"name":·"args.css",
17 ············"value":·"dita-ot-doc.css"
18 ··········},
19 ··········{
20 ············"name":·"args.csspath",
21 ············"value":·"css"
22 ··········},
23 ··········{
24 ············"name":·"args.cssroot",
25 ············"path":·"../../resources"
26 ··········},
27 ··········{
28 ············"name":·"args.gen.task.lbl",
29 ············"value":·"YES"
30 ··········},
31 ··········{
32 ············"name":·"args.hdr",
33 ············"href":·"../../resources/header.xml"
34 ··········},
35 ··········{
36 ············"name":·"args.rellinks",
37 ············"value":·"noparent"
38 ··········},
39 ··········{
40 ············"name":·"html5.toc.generate",
41 ············"value":·"no"
42 ··········},
43 ··········{
44 ············"name":·"nav-toc",
45 ············"value":·"partial"
46 ··········}
47 ········]
48 ······}
49 ····}
50 ··]
51 }

Figure 9: Sample project file for HTML output

This file can be used to generate the HTML version of the DITA-OT documentation by running
the following command from the docsrc folder of the DITA-OT installation directory:

dita --project=samples/project-files/html.json

The project file for HTML output imports the common html context from a shared
project context defined in the dita-ot-dir/docsrc/samples/project-files/

56

Publishing with the dita command

common.json file, which includes the input map file and the DITAVAL file used to filter the
output.

 1 {
 2 ··"contexts":·[
 3 ····{
 4 ······"id":·"html",
 5 ······"input":·"../../userguide.ditamap",
 6 ······"profiles":·{
 7 ········"ditavals":·["../../resources/html.ditaval"]
 8 ······}
 9 ····}
10 ··]
11 }

Figure 10: Sample shared context for HTML-based output

Sample YAML project files

DITA-OT includes sample project files in YAML format that can be used to define a
publication project. Like the XML project samples, the sample YAML files illustrate
how deliverables can be described for use in publication projects. The YAML samples
are functionally equivalent to their XML and JSON counterparts, with minor adaptations
to YAML file syntax.

Project files can be designed in a modular fashion to create reusable configuration structures that
allow you to define settings in one file and refer to them in other projects to publish multiple
deliverables at once.

For example, dita-ot-dir/docsrc/samples/project-files/html.yaml defines
a single HTML deliverable.

 1 ---
 2 includes:
 3 ··-·'common.yaml'
 4 deliverables:
 5 ··-·name:·'HTML5'
 6 ····context:
 7 ······idref:·'html'
 8 ····output:·'.'
 9 ····publication:
10 ······transtype:·'html5'
11 ······params:
12 ········-·name:·'args.copycss'
13 ··········value:·'yes'
14 ········-·name:·'args.css'
15 ··········value:·'dita-ot-doc.css'
16 ········-·name:·'args.csspath'
17 ··········value:·'css'
18 ········-·name:·'args.cssroot'
19 ··········path:·'../../resources'
20 ········-·name:·'args.gen.task.lbl'
21 ··········value:·'YES'
22 ········-·name:·'args.hdr'
23 ··········href:·'../../resources/header.xml'
24 ········-·name:·'args.rellinks'
25 ··········value:·'noparent'
26 ········-·name:·'html5.toc.generate'
27 ··········value:·'no'
28 ········-·name:·'nav-toc'
29 ··········value:·'partial'

Figure 11: Sample project file for HTML output

57

https://yaml.org

Publishing DITA content

This file can be used to generate the HTML version of the DITA-OT documentation by running
the following command from the docsrc folder of the DITA-OT installation directory:

dita --project=samples/project-files/html.yaml

The project file for HTML output imports the common html context from a shared
project context defined in the dita-ot-dir/docsrc/samples/project-files/
common.yaml file, which includes the input map file and the DITAVAL file used to filter the
output.

1 ---
2 contexts:
3 ··-·id:·'html'
4 ····input:·'../../userguide.ditamap'
5 ····profiles:
6 ······ditavals:
7 ········-·'../../resources/html.ditaval'

Figure 12: Sample shared context for HTML-based output

58

Running the dita command from a Docker image

Chapter 9 Running the dita command from a Docker
image

Docker is a platform used to build, share, and run portable application containers.
As of version 3.4, the DITA-OT project provides an official Docker container image
that includes everything you need to run the toolkit and publish DITA content from a
containerized environment.

About application containers

Using containers to deploy applications isolates software from its environment to ensure that it
works consistently despite any differences in the host operating system, for example.

Docker containers are designed as stateless machines that can be quickly created and destroyed,
started and stopped. Each Docker image provides its own private filesystem that includes only the
code required to run the application itself — it is not intended for persistent data storage.

When a container is stopped, any changes made within the container are lost, so source files
and generated output should be stored outside the container. These resources are attached to the
container by mounting directories from the host machine.

Note: If you use Podman to manage and run your containers, you can substitute podman for
the docker command in the instructions below.

Before you begin

To run the DITA-OT image, you will need to install Docker and be able to access the GitHub
Container Registry.

• To download Docker Desktop, you may be prompted to sign in with your Docker ID (or sign
up to create one).

Procedure

1. Install Docker for your operating system.

• Install Docker Desktop on Windows

• Install Docker Desktop on Mac

• On macOS, you can also install Docker Desktop via Homebrew:

$ brew install homebrew/cask/docker
Downloading…

• When you first run the Docker Desktop application, you may be prompted to grant
privileged access to allow Docker to install its networking components and links to the
Docker apps. Grant this access and accept the service agreement to proceed.

59

https://www.docker.com
https://podman.io/
https://docs.docker.com/desktop/windows/install/
https://docs.docker.com/desktop/mac/install/
https://brew.sh

Publishing DITA content

• On Linux, install Docker Community Edition (CE) via your operating system’s package
manager, for example:

$ sudo apt-get install docker-ce

2. To build output, map a host directory to a container volume and specify options for the dita
command.

$ docker run --rm \
 -v /Users/username/source:/src ghcr.io/dita-ot/dita-ot:4.3.2 \
 -i /src/input.ditamap \
 -o /src/out \
 -f html5 -v

This command sequence specifies the following options:

• -v mounts the source subfolder of your home directory and binds it to the /src volume
in the container

• -i specifies the input.ditamap file in your source folder as the input map file

• -o writes the output to source/out

• -f sets the output format to HTML5, and

• -v displays build progress messages with verbose logging

On Windows, if your Users directory is on the C:\ drive, use /c/Users/… to map the
host directory:

> C:\Users\username> docker run --rm ^
 -v /c/Users/username/source:/src ghcr.io/dita-ot/dita-ot:4.3.2 ^
 -i /src/input.ditamap ^
 -o /src/out ^
 -f html5 -v

Note: The DITA-OT container image uses the ENTRYPOINT instruction to run the dita
command from the /opt/app/bin/ directory of the container automatically, so you
there’s no need to include the dita command itself, only the arguments and options you
need to publish your content.

Custom images.. 60

Installing plug-ins in a Docker image
To install custom plug-ins or make other changes based on the DITA-OT parent image,
you can create your own Dockerfile and specify the official DITA-OT image as the
basis for your image.

About this task

Each subsequent declaration in the Dockerfile modifies this parent image, so you can start with
the official image, and add custom plug-ins or other commands as required to create a custom
Docker image that includes everything you need to publish your content.

60

Running the dita command from a Docker image

Procedure

1. Create a new Dockerfile and specify the official DITA-OT image in the FROM directive.

#·Use·the·latest·DITA-OT·image·#·as·parent:
FROM·ghcr.io/dita-ot/dita-ot:4.3.2

2. Optional: You can extend your image with a RUN declaration that runs the dita command
from the container to install a custom plug-in, and specify the filename or URL of the plug-
in’s distribution ZIP file.

#·Install·a·custom·plug-in·from·a·remote·location:
RUN·dita·--install·https://github.com/infotexture/dita-bootstrap/archive/master.zip

3. Optional: You can also install custom plug-ins from the main DITA-OT plug-in registry at
dita-ot.org/plugins, or from your company plug-in registry.

#·Install·from·the·registry·at·dita-ot.org/plugins:
RUN·dita·--install·org.dita-community.pdf-page-break

Example

The docsrc/samples folder in the DITA-OT installation directory contains a complete
example:

1 #·Use·the·latest·DITA-OT·image·#·as·parent:
2 FROM·ghcr.io/dita-ot/dita-ot:4.3.2
3

4 #·Install·a·custom·plug-in·from·a·remote·location:
5 RUN·dita·--install·https://github.com/infotexture/dita-bootstrap/archive/master.zip
6

7 #·Install·from·the·registry·at·dita-ot.org/plugins:
8 RUN·dita·--install·org.dita-community.pdf-page-break

Figure 13: Sample Dockerfile with custom plug-ins: dita-ot-dir/docsrc/samples/docker/
Dockerfile

61

https://www.dita-ot.org/plugins

Publishing DITA content

Building a new image

You can build a Docker image from this example by running the following command from the
dita-ot-dir/docsrc/samples directory:

$ docker image build -t sample-docker-image:1.0 docker/
[+] Building 81.5s (4/6)

 => [internal] load build definition from Dockerfile

 0.0s
 => => transferring dockerfile: 367B

 0.0s
 => [internal] load .dockerignore

 0.0s
 => => transferring context: 2B

 0.0s
 => [internal] load metadata for ghcr.io/dita-ot/dita-ot:4.3.2
 => [1/3] FROM ghcr.io/dita-ot/dita-ot:4.3.2@sha256:<hash>
 => => resolve ghcr.io/dita-ot/dita-ot:4.3.2@sha256:<hash>
Step 2/3 : RUN dita --install https://github.com/infotexture/dita-bootstrap/archive/
master.zip
 ---> Running in d510f874cae0
Added net.infotexture.dita-bootstrap
Removing intermediate container d510f874cae0
 ---> 63deb8e15b5b
Step 3/3 : RUN dita --install org.dita-community.pdf-page-break
 ---> Running in b4ef2fcad916
Added org.dita-community.pdf-page-break
Removing intermediate container b4ef2fcad916
 ---> 402885636b7f
Successfully built 402885636b7f
Successfully tagged sample-docker-image:1.0

Docker steps through each instruction in the Dockerfile to build the sample image. In this case,
the dita command provides feedback on each installed plug-in.

Running the new container

You can then start a container based on your new image:

$ docker container run --rm \
 -v /path/to/dita-ot-dir/docsrc:/src sample-docker-image:1.0 \
 -i /src/userguide.ditamap \
 -o /src/out/dita-bootstrap \
 -f html5-bootstrap -v

This command sequence specifies the following options:

• -v mounts the docsrc subfolder of the DITA-OT directory on your host machine and binds
it to the /src volume in the container

• -i specifies dita-ot-dir/docsrc/userguide.ditamap as the input map file

• -o writes the output to dita-ot-dir/docsrc/out/dita-bootstrap

• -f sets the output format to the Bootstrap template, and

• -v displays build progress messages with verbose logging

When the build is finished, you should find a copy of the DITA-OT documentation under dita-
ot-dir/docsrc/out/dita-bootstrap, styled with the basic Bootstrap template from
the custom plug-in.

62

Running the dita command from a GitHub Action

Chapter 10 Running the dita command from a GitHub
Action

GitHub Actions are a CI/CD workflow mechanism attached to GitHub. Each action is an
individual unit of functionality that can be combined with other GitHub Actions to create
workflows, which are triggered in response to certain GitHub events. As of version 3.6.1,
the DITA-OT project provides an official dita-ot-action that can be used as a step within
a GitHub workflow to publish documentation as part of your CI/CD pipeline.

About GitHub Actions

GitHub Actions can automate tasks such as document generation as part of your software
development life cycle. GitHub Actions are event-driven, allowing a series of tasks to run one
after another when a specified event has occurred.

Each step is an individual atomic task that can run commands in a job. A step can be either an
action or a shell command. Each step in a job executes on the same runner, allowing the actions
in that job to share data with each other, therefore files generated through the dita-ot-build
action can be archived or published by later actions within the same job.

Procedure

1. In your GitHub repository, create the .github/workflows/ directory to store your
workflow files.

2. In the .github/workflows/ directory, create a new file called dita-ot-build-
actions.yml and add the following code.

name:·CI
'on':
··push:
····branches:
······-·master
jobs:
··build-dita:
····name:·Build·DITA
····runs-on:·ubuntu-latest
····steps:
······-·name:·Git·checkout
········uses:·actions/checkout@v2

This setup ensures the action runs whenever code is updated on the master branch and
checks out the codebase.

3. In the same file, add the following code.

······-·name:·Build·PDF
········uses:·dita-ot/dita-ot-action@master
········with:
··········input:·document.ditamap
··········transtype:·pdf
··········output-path:·out

This action specifies the following:

• name defines the name of the action to be displayed within the GitHub repository

63

https://github.com/features/actions
https://github.com/dita-ot/dita-ot-action

Publishing DITA content

• uses specifies the name and version of the GitHub Action to run. Use dita-ot/dita-
ot-action@master to run the latest version.

• input specifies the name and location of the input map file within the GitHub repository
(relative to the repository root)

• transtype sets the output format to PDF, and

• output-path writes the output to the out folder within the running action

Example

The docsrc/samples folder in the DITA-OT installation directory contains several complete
examples. The following GitHub Action generates styled HTML and PDF outputs.

 1 name:·CI
 2 'on':
 3 ··push:
 4 ····branches:
 5 ······-·master
 6 jobs:
 7 ··build-dita:
 8 ····name:·Build·DITA
 9 ····runs-on:·ubuntu-latest
10 ····steps:
11 ······-·name:·Git·checkout
12 ········uses:·actions/checkout@v2
13 ······-·name:·Build·HTML5·+·Bootstrap
14 ········uses:·dita-ot/dita-ot-action@master
15 ········with:
16 ··········plugins:·|
17 ············net.infotexture.dita-bootstrap
18 ··········input:·document.ditamap
19 ··········transtype:·html5-bootstrap
20 ··········output-path:·out
21

22 ······-·name:·Build·PDF
23 ········uses:·dita-ot/dita-ot-action@master
24 ········with:
25 ··········install:·|
26 ············#·Run·some·arbitrary·installation·commands
27 ············apt-get·update·-q
28 ············apt-get·install·-qy·--no-install-recommends·nodejs
29 ············nodejs·-v
30

31 ············#·Install·plugins
32 ············dita·install·fox.jason.extend.css
33 ············dita·install·org.doctales.xmltask
34 ············dita·install·fox.jason.prismjs
35 ··········build:·|
36 ············#·Use·the·dita·command·line
37 ············dita·-i·document.ditamap·-o·out·-f·pdf·--filter=filter1.ditaval
38

39 ······-·name:·Upload·DITA·Output·to·a·ZIP·file
40 ········uses:·actions/upload-artifact@v2
41 ········with:
42 ··········name:·dita-artifact
43 ··········path:·'out'
44

45 ······-·name:·Deploy·DITA·Output·to·GitHub·Pages
46 ········uses:·JamesIves/github-pages-deploy-action@3.7.1
47 ········with:
48 ··········GITHUB_TOKEN:·${{·secrets.GITHUB_TOKEN·}}
49 ··········BRANCH:·gh-pages·#·The·branch·the·action·should·deploy·to.
50 ··········FOLDER:·out·#·The·folder·the·action·should·deploy.

Figure 14: Sample GitHub Action: dita-ot-dir/docsrc/samples/github-actions/dita-ot-
pipeline.yaml

The Build HTML5 + Bootstrap step reuses the input, transtype and output-path
settings. In addition, additional DITA-OT plug-ins can be loaded using the plugins parameter,
with each plug-in separated by a comma or new line separator.

64

Running the dita command from a GitHub Action

The Build PDF step uses an alternative syntax where the install and build parameters are
used to run arbitrary commands from the command line.

What to do next

See the docsrc/samples/github-actions folder in the DITA-OT installation directory
for additional examples of GitHub Actions for different scenarios.

65

Publishing DITA content

66

Building output using Ant

Chapter 11 Building output using Ant

You can use Ant to run DITA Open Toolkit and generate output. You can use the
complete set of parameters that the toolkit supports.

About this task

Note: DITA-OT still supports Ant builds, but the dita command offers a simpler command
interface, sets all required environment variables, and allows you to run DITA-OT without
setting up anything beforehand.

Apache Ant™...67
Building output using Ant.. 67
Creating an Ant build script... 68

Apache Ant™

Apache Ant™ is a Java-based, open-source build tool provided by the Apache
Foundation. It can be used to declare a sequence of build actions. It is well suited for both
development and document builds. The toolkit ships with a copy of Ant.

DITA-OT uses Ant to manage the XSLT scripts that are used to perform the various
transformation; it also uses Ant to manage intermediate steps that are written in Java.

The most important Ant script is the build.xml file. This script defines and combines common
pre-processing and output transformation routines; it also defines the DITA-OT extension points.

Building output using Ant
You can build output with an Ant build script that provides the DITA-OT parameters.

Procedure

1. Open a command prompt or terminal session.

2. Issue the following command:

Option Description

Linux or macOS bin/ant -f build-script target

Windows bin\ant -f build-script target

where:

• build-script is name of the Ant build script.

• target is an optional switch that specifies the name of the Ant target that you want to
run.

67

Publishing DITA content

If you do not specify a target, the value of the @default attribute for the Ant project is
used.

Creating an Ant build script
Instead of typing the DITA-OT parameters at the command prompt, you might want to
create an Ant build script that contains all of the parameters.

Procedure

1. Create an XML file that contains the following content:

 1 <?xml·version="1.0"·encoding="UTF-8"·?>
 2 <project·name="%project-name%"·default="%default-target%"·basedir=".">
 3

 4 ··<property·name="dita.dir"·location="%path-to-DITA-OT%"/>
 5

 6 ··<target·name="%target-name%">
 7 ····<ant·antfile="${dita.dir}/build.xml">
 8 ······<property·name="args.input"·value="%DITA-input%"/>
 9 ······<property·name="transtype"·value="html5"/>
10 ····</ant>
11 ··</target>
12

13 </project>

You will replace the placeholder content (indicated by the % signs) with content applicable to
your environment.

2. Specify project information:

a) Optional: Set the value of the @name attribute to the name of your project.

b) Set the value of the @default attribute to the name of a target in the build script.

If the build script is invoked without specifying a target, this target will be run.

3. Set the value of the dita.dir property to the location of the DITA-OT installation.

This can be a fully qualified path, or you can specify it relative to the location of the Ant build
script that you are writing.

4. Create the Ant target:

a) Set the value of the @name attribute.

b) Specify the value for the args.input property.

c) Specify the value of the transtype property.

5. Save the build script.

68

Building output using Ant

Example

The following Ant build script generates CHM and PDF output for two sample DITA maps.

 1 <?xml·version="1.0"·encoding="UTF-8"?>
 2 <project·name="build-chm-pdf"·default="all"·basedir=".">
 3 ··<property·name="dita.dir"·location="${basedir}/../../.."/>
 4 ··<target·name="all"·description="build·CHM·and·PDF"·depends="chm,pdf"/>
 5 ··<target·name="chm"·description="build·CHM">
 6 ····<ant·antfile="${dita.dir}/build.xml">
 7 ······<property·name="args.input"·location="../sequence.ditamap"/>
 8 ······<property·name="transtype"·value="htmlhelp"/>
 9 ······<property·name="output.dir"·location="../out/chm"/>
10 ······<property·name="args.gen.task.lbl"·value="YES"/>
11 ····</ant>
12 ··</target>
13 ··<target·name="pdf"·description="build·PDF">
14 ····<ant·antfile="${dita.dir}/build.xml">
15 ······<property·name="args.input"·location="../taskbook.ditamap"/>
16 ······<property·name="transtype"·value="pdf"/>
17 ······<property·name="output.dir"·location="../out/pdf"/>
18 ······<property·name="args.gen.task.lbl"·value="YES"/>
19 ······<property·name="args.rellinks"·value="nofamily"/>
20 ····</ant>
21 ··</target>
22 </project>

In addition to the mandatory parameters (args.input and transtype), the chm and pdf
targets each specify some optional parameters:

• The args.gen.task.lbl property is set to YES, which ensures that headings are
automatically generated for the sections of task topics.

• The output.dir property specifies where DITA-OT writes the output of the
transformations.

The pdf target also specifies that related links should be generated in the PDF, but only those
links that are created by relationship tables and <link> elements.

Finally, the all target specifies that both the chm and pdf target should be run.

69

Publishing DITA content

70

Using the Java API

Chapter 12 Using the Java API

DITA Open Toolkit includes a Java Application Programming Interface to allow
developers to embed the toolkit more easily into other Java programs.

When using the API, programmers don’t need to know or care that DITA-OT uses Ant, they can
just use Java.

Note: When running DITA-OT via the dita command, an ant shell script handles the
classpath setup, but when using the API the classpath should be set up as part of the normal
classpath configuration for the Java application.

Example usage

 1 //·Create·a·reusable·processor·factory·with·DITA-OT·base·directory
 2 ProcessorFactory·pf·=·ProcessorFactory.newInstance(ditaDir);
 3 //·and·set·the·temporary·directory
 4 pf.setBaseTempDir(tempDir);
 5

 6 //·Create·a·processor·using·the·factory·and·configure·the·processor
 7 Processor·p·=·pf.newProcessor("html5")
 8 .setInput(mapFile)
 9 .setOutputDir(outDir)
10 .setProperty("nav-toc",·"partial");
11

12 //·Run·conversion
13 p.run();

By default, running DITA-OT via the API will write a debug log to the temporary directory. A
custom SLF4J logger can also be used to access the log via the Simple Logging Facade for Java.

The processor cleans the temporary directory by default, but this can be disabled to simplify
debugging in cases where the processor failed.

Tip: See the DITA-OT Java API documentation in the doc/api/ folder of the DITA-OT
distribution package for information on the packages, classes, interfaces and methods provided
by the Java API.

Downloading DITA-OT from Maven Central

As of version 2.5, the DITA Open Toolkit base library (dost.jar) is available via the Maven 2
Central Repository. You can use this mechanism to download the main JAR file and include it in
the build for other Java projects.

To locate the latest version, search for the org.dita-ot group ID.

Important: The dost.jar file provides only the DITA Open Toolkit base library. It does
not contain the full DITA-OT distribution and cannot be used to run DITA-OT by itself. You
will need to ensure that your build installs the other files and directories required for the toolkit
along with the dependencies for your project.

71

https://search.maven.org/#search%7Cga%7C1%7Cg%3A%22org.dita-ot%22

Publishing DITA content

72

Part 4 Configuring DITA-OT

You can adjust DITA Open Toolkit behavior via dita command arguments and options,
parameter settings, and configuration properties.

Chapter 13 DITA command arguments..75
Chapter 14 DITA-OT parameters... 81
Chapter 15 Configuration properties.. 99
Chapter 16 Customizing HTML... 105
Chapter 17 Customizing PDF... 111

73

Configuring DITA-OT

74

Arguments and options for the dita command

Chapter 13 Arguments and options for the dita
command

The dita command takes mandatory arguments to process DITA content.
Subcommands can be used to manage plug-ins, or print information about the current
configuration. A series of options are available to modify the command behavior or
specify additional configuration parameters.

Usage

To convert content from one format to another, specify the file to transform and the desired
output format. If necessary, you can set additional configuration parameters with options.

dita --input = file --format = name [options]
dita --project = file [options]

Note: Most dita command options support several syntax alternatives. All options can be
specified with a GNU-style option keyword preceded by two hyphens. In many cases, Unix-
style single-letter options (preceded by a single hyphen) are also available for brevity and
backwards compatibility.

The dita command also supports a series of subcommands that can be used to manage plug-ins,
or print information about the current configuration or version.

dita deliverables file
dita init template [--output = dir] [options]
dita install [{ ID URL file }]
dita plugins
dita transtypes
dita uninstall ID
dita validate --input = file [options]
dita version

Arguments

Each transformation requires you to specify at least the file to transform and the desired output
format.

--input=file
-i file

Specifies the main file for your documentation project.

This argument corresponds to the common parameter args.input on page 82.

Typically this is a DITA map, however it also can be a DITA topic if you
want to transform a single DITA file. The path can be absolute, relative to
args.input.dir, or relative to the current directory if args.input.dir is not
defined.

--format=name

75

Configuring DITA-OT

-f name

Specifies the output format (transformation type).

This argument corresponds to the common parameter transtype on page 87.

To list the formats that are currently available in your environment, use dita
transtypes.

You can create plug-ins to add new output formats; by default, the following values are
available:

• dita

• eclipsehelp

• html5

• htmlhelp

• markdown, markdown_gitbook, and markdown_github

• pdf

• xhtml

Tip: See Chapter 3 Output formats on page 23 for sample command line syntax and
more information on each transformation.

--project=file

Publish a project file with multiple deliverables.

You can add the --deliverable option to specify a single deliverable in the
project.

For more information, see Publishing with project files on page 49.

Subcommands

deliverables file

Show a list of the available deliverables in the specified project file.

init template

Initialize a project with files from the specified template.

The folder hierarchy in the template will be copied to the current working directory
by default. To write the files to a different location, add the --output option and
specify the desired path. The directory will be created if it doesn’t exist. If any of the
template files are already present, an error will appear.

init --list

Show a list of the available project templates.

The entries in this list may be passed as arguments to the init subcommand.

install { ID | URL | file }

Install a single plug-in ID from the registry at dita-ot.org/plugins (or a local registry),
from a remote URL, or a local ZIP file.

76

https://www.dita-ot.org/plugins

Arguments and options for the dita command

Note: The --force option can be passed as an additional option to the installation
subcommand to force-install an existing plug-in: dita install plug-in-
zip --force.

Tip: The dita install command uses a network connection to install plug-
ins from the configured registry or process remote referenced resources. In
environments where an HTTP proxy is used to establish a network connection, you
can provide the proxy configuration via the ANT_OPTS environment variable. For
more information, see Chapter 30 Configuring proxies on page 285.

install

If no ID, URL, or file argument is provided, the installation process reloads the
current set of plug-ins from the plugins directory (or any custom locations defined
via the pluginsdir property in the configuration.properties file in the
config directory). This approach can be used to add or remove multiple plug-ins
at once, or any individual plug-ins you have already copied to (or removed from) the
plug-in directories. Any plug-ins added or removed in the process will be listed by their
plug-in ID.

plugins

Show a list of the currently installed plug-ins.

transtypes

Show a list of the available output formats (transformation types).

The entries in this list may be passed as values to the --format argument.

uninstall ID

Remove the plug-in with the specified ID.

For a list of the currently installed plug-in IDs, use dita plugins.

Attention: The uninstall subcommand also removes the corresponding plug-in
directory from the plugins folder.

validate

Validate input file. No output is generated.

version

Print version information and exit.

Options

--debug
-d

Debug logging prints considerably more additional information. The debug log
includes all information from the verbose log, plus details on Java classes, additional
Ant properties and overrides, pre-processing filters, parameters, and stages, and the
complete build sequence. Debug logging requires additional resources and can slow

77

Configuring DITA-OT

down the build process, so it should only be enabled when further details are required
to diagnose problems.

--filter=files

Specifies filter file(s) used to include, exclude, or flag content. Relative paths are
resolved against the current directory and internally converted to absolute paths.

Note:

To specify multiple filter files, use the system path separator character to delimit
individual file paths (semicolon ‘;’ on Windows, and colon ‘:’ on macOS and
Linux) and wrap the value in quotes:

--
filter="filter1.ditaval;filter2.ditaval;filter3.ditaval"

As of DITA-OT 3.6, the --filter option can also be passed multiple times:

--filter=filter1.ditaval --filter=filter2.ditaval --
filter=filter3.ditaval

DITAVAL files are evaluated in the order specified, so conditions specified in the
first file take precedence over matching conditions specified in later files, just as
conditions at the start of a DITAVAL document take precedence over matching
conditions later in the same document.

--help
-h

Print a list of available arguments, options, and subcommands.

--logfile=file
-l file

Write logging messages to a file.

Note: If processing is successful, nothing is written to the log, so the file will be
empty if there are no errors or warnings. To include informational messages in the
log, add the --verbose option (or -v).

--no-color

By default, DITA-OT prints certain log messages to the console in color. In terminal
environments that do not support colored output, the ANSI color escape codes will
be shown instead. To deactivate colored output, pass the --no-color option to the
dita command, or set the TERM=dumb or NO_COLOR environment variables.

--output=dir
-o dir

Specifies the path of the output directory; the path can be absolute or relative to the
current directory.

This option corresponds to the common parameter output.dir on page 86.

By default, the output is written to the out subdirectory of the current directory.

78

Arguments and options for the dita command

--parameter=value
-Dparameter=value

Specify a value for a DITA-OT or Ant build parameter.

The GNU-style --parameter=value form is only available for parameters that are
configured in the plug-in configuration file; the Java-style -D form can also be used to
specify additional non-configured parameters or set system properties.

Parameters not implemented by the specified transformation type or referenced in a
.properties file are ignored.

Tip: If you are building in different environments where the location of the input
files is not consistent, set args.input.dir with the dita command and
reference its value with ${args.input.dir} in your .properties file.

--propertyfile=file

Use build parameters defined in the referenced .properties file.

Build parameters specified on the command line override those set in the
.properties file.

--repeat=N

Repeat the transformation N number of times.

This option can be used by plug-in developers to measure performance. To run a
conversion five times, for example, use --repeat=5. The duration of each execution
will appear in the console when the final transformation is complete.

$ dita --input=path/to/sample.ditamap --format=html5 \
 --repeat=5
1 11281ms
2 4132ms
3 3690ms
4 4337ms
5 3634ms

--resource=file
-r file

Specifies resource files.

This argument corresponds to the common parameter args.resources on page 83.

Resource files can be used to convert partial documentation sets by processing input
with additional information.

For example, to process a single topic file with a map that contains key definitions, use
a command like this:

dita --input=topic.dita --resource=keys.ditamap --format=html5

To convert a chapter map to HTML5 and insert related links from relationship tables in
a separate map, use:

dita --input=chapter.ditamap --resource=reltables.ditamap --format=html5

--temp=dir
-t dir

79

Configuring DITA-OT

Specifies the location of the temporary directory.

This option corresponds to the common parameter dita.temp.dir on page 85.

The temporary directory is where DITA-OT writes intermediate files that are generated
during the transformation process.

--theme=file

Publish PDF output with a theme configuration file.

For more information, see PDF themes on page 114.

--verbose
-v

Verbose logging prints additional information to the console, including directory
settings, effective values for Ant properties, input/output files, and informational
messages to assist in troubleshooting.

80

DITA-OT parameters

Chapter 14 DITA-OT parameters

Certain parameters apply to all DITA-OT transformations. Other parameters are
common to the HTML-based transformations. Some parameters apply only to specific
transformation types. These parameters can be passed as options to the dita command
using the --parameter=value syntax or included in build scripts as Ant properties.

If your toolkit installation includes custom plug-ins that define additional parameters, you can
add entries to the following topics by rebuilding the DITA-OT documentation.

Common...81
PDF.. 88
HTML-based output.. 90
HTML5.. 93
XHTML... 96
HTML Help...96
Eclipse Help.. 96
Other.. 97

Common parameters
Certain parameters apply to all transformations that DITA Open Toolkit supports.

args.debug

Specifies whether debugging information is included in the log. The allowed values are
yes and no; the default value is no.

args.draft

Specifies whether the content of <draft-comment> and <required-cleanup> elements is
included in the output. The allowed values are yes and no; the default value is no.

Corresponds to the XSLT parameter DRAFT in most XSLT modules.

Tip: For PDF output, setting the args.draft parameter to yes causes the
contents of the <titlealts> element to be rendered below the title.

args.figurelink.style

Specifies how cross references to figures are styled in output. The allowed values are
NUMBER, TITLE, and NUMTITLE.

Specifying NUMBER results in "Figure 5"; specifying TITLE results in the title of the
figure. Corresponds to the XSLT parameter FIGURELINK.

Note: Support for PDF was added in DITA-OT 2.0. By default PDF uses the value
NUMTITLE, which is not supported for other transformation types; this results in
"Figure 5. Title".

81

Configuring DITA-OT

args.filter

Specifies filter file(s) used to include, exclude, or flag content. Relative paths are
resolved against the DITA-OT base directory (for backwards compatibility) and
internally converted to absolute paths.

Note:

To specify multiple filter files, use the system path separator character to delimit
individual file paths (semicolon ‘;’ on Windows, and colon ‘:’ on macOS and
Linux) and wrap the value in quotes:

--
args.filter="filter1.ditaval;filter2.ditaval;filter3.ditaval"

DITAVAL files are evaluated in the order specified, so conditions specified in the
first file take precedence over matching conditions specified in later files, just as
conditions at the start of a DITAVAL document take precedence over matching
conditions later in the same document.

args.gen.task.lbl

Specifies whether to generate headings for sections within task topics. The allowed
values are YES and NO.

Corresponds to the XSLT parameter GENERATE-TASK-LABELS.

args.grammar.cache

Specifies whether the grammar-caching feature of the XML parser is used. The
allowed values are yes and no; the default value is yes.

Note: This option dramatically speeds up processing time. However, there is a
known problem with using this feature for documents that use XML entities. If your
build fails with parser errors about entity resolution, set this parameter to no.

args.input

Specifies the main file for your documentation project.

This parameter corresponds to the command-line argument --input.

Typically this is a DITA map, however it also can be a DITA topic if you
want to transform a single DITA file. The path can be absolute, relative to
args.input.dir, or relative to the current directory if args.input.dir is not
defined.

args.input.dir

Specifies the base directory for your documentation project.

args.output.base

Specifies the name of the output file without file extension.

args.rellinks

82

DITA-OT parameters

Specifies which related links to include in the output. The following values are
supported:

• none – No links are included.

• all – All links are included.

• noparent – Ancestor and parent links are not included.

• nofamily – Parent, ancestor, child, descendant, sibling, next, previous, and
cousin links are not included.

For PDF output, the default value is nofamily. Other formats include all link roles
except ancestor links.

Tip: For more precise control over related links output, set the internal Ant property
include.rellinks and specify which link roles to include.

args.resources

Specifies resource files.

This parameter corresponds to the command-line option --resource.

Resource files can be used to convert partial documentation sets by processing input
with additional information.

For example, to process a single topic file with a map that contains key definitions, use
a command like this:

dita --input=topic.dita --format=html5 --args.resources=keys.ditamap

To convert a chapter map to HTML5 and insert related links from relationship tables in
a separate map, use:

dita --input=chapter.ditamap --format=html5 --
args.resources=reltables.ditamap

args.tablelink.style

Specifies how cross references to tables are styled. The allowed values are NUMBER,
TITLE, and NUMTITLE.

Specifying NUMBER results in "Table 5"; specifying TITLE results in the title of the
table. Corresponds to the XSLT parameter TABLELINK.

Note: Support for PDF was added in DITA-OT 2.0. By default PDF uses the value
NUMTITLE, which is not supported for other transformation types; this results in
"Table 5. Title".

build-step.branch-filter

Run process branch-filter The allowed values are true and false; the default value
is true.

build-step.chunk

Run process chunk The allowed values are true and false; the default value is
true.

83

Configuring DITA-OT

build-step.clean-preprocess

Run process clean-preprocess The allowed values are true and false; the default
value is true.

build-step.clean-temp

Run process clean-temp The allowed values are true and false; the default value is
true.

build-step.coderef

Run process coderef The allowed values are true and false; the default value is
true.

build-step.conref

Run process conref The allowed values are true and false; the default value is
true.

build-step.copy-flag

Run process copy-flag The allowed values are true and false; the default value is
true.

build-step.copy-html

Run process copy-html The allowed values are true and false; the default value is
true.

build-step.copy-image

Run process copy-image The allowed values are true and false; the default value
is true.

build-step.keyref

Run process keyref The allowed values are true and false; the default value is
true.

build-step.map-profile

Run process map-profile The allowed values are true and false; the default value
is true.

build-step.maplink

Run process maplink The allowed values are true and false; the default value is
true.

build-step.mapref

Run process mapref The allowed values are true and false; the default value is
true.

build-step.move-meta-entries

Run process move-meta-entries The allowed values are true and false; the default
value is true.

build-step.normalize-codeblock

Run process normalize-codeblock The allowed values are true and false; the
default value is true.

build-step.profile

Run process profile The allowed values are true and false; the default value is
false.

84

DITA-OT parameters

build-step.topic-profile

Run process topic-profile The allowed values are true and false; the default value
is false.

build-step.topicpull

Run process topicpull The allowed values are true and false; the default value is
true.

clean.temp

Specifies whether DITA-OT deletes the files in the temporary directory after it finishes
a build. The allowed values are yes and no; the default value is yes.

conserve-memory

Conserve memory at the expense of processing speed. The allowed values are true
and false; the default value is false.

default.language

Specifies the language that is used if the input file does not have the @xml:lang
attribute set on the root element. By default, this is set to en. The allowed values are
those that are defined in IETF BCP 47, Tags for Identifying Languages.

dita.dir

Specifies where DITA-OT is installed.

dita.input.valfile

Specifies a filter file to be used to include, exclude, or flag content.

Notice: This parameter is deprecated in favor of the args.filter parameter.

dita.temp.dir

Specifies the location of the temporary directory.

This parameter corresponds to the command-line option --temp.

The temporary directory is where DITA-OT writes intermediate files that are generated
during the transformation process.

filter-stage

Specifies whether filtering is done before all other processing, or after key and conref
processing. The allowed values are early and late; the default value is early.

Note: Changing the filtering stage may produce different results for the same initial
data set and filtering conditions.

force-unique

Generate copy-to attributes to duplicate topicref elements. The allowed values are
true and false; the default value is false.

Setting this to true ensures that unique output files are created for each instance of a
resource when a map contains multiple references to a single topic.

generate-debug-attributes

85

https://tools.ietf.org/html/bcp47

Configuring DITA-OT

Specifies whether the @xtrf and @xtrc debugging attributes are generated in the
temporary files. The following values are supported:

• true (default) – Enables generation of debugging attributes

• false – Disables generation of debugging attributes

Note: Disabling debugging attributes reduces the size of temporary files and
thus reduces memory consumption. However, the log messages no longer have
the source information available and thus the ability to debug problems might
deteriorate.

generate.copy.outer

Adjust how output is generated for content that is located outside the directory
containing the input resource (DITA map or topic). The following values are
supported:

• 1 (default) – Do not generate output for content that is located outside the DITA
map directory.

• 3 – Shift the output directory so that it contains all output for the publication.

See Handling content outside the map directory on page 108 for more information.

link-crawl

Specifies whether to crawl only those topic links found in maps, or all discovered topic
links. The allowed values are map and topic; the default value is topic.

onlytopic.in.map

Specifies whether files that are linked to, or referenced with a @conref attribute,
generate output. The allowed values are true and false; the default value is
false.

If set to true, only files that are referenced directly from the map will generate
output.

outer.control

Specifies whether to warn or fail if content is located outside the directory containing
the input resource (DITA map or topic). The following values are supported:

• fail – Fail quickly if files are going to be generated or copied outside of the
directory.

• warn (default) – Complete the operation if files will be generated or copied outside
of the directory, but log a warning.

• quiet – Quietly finish without generating warnings or errors.

Warning: Microsoft HTML Help Compiler cannot produce HTML Help for
documentation projects that use outer content. The content files must reside in or
below the directory containing the root map file, and the map file cannot specify ".."
at the start of the @href attributes for <topicref> elements.

output.dir

Specifies the name and location of the output directory.

86

DITA-OT parameters

This parameter corresponds to the command-line option --output.

By default, the output is written to the out subdirectory of the current directory.

parallel

Run processes in parallel when possible. The allowed values are true and false; the
default value is false.

processing-mode

Specifies how DITA-OT handles errors and error recovery. The following values are
supported:

• strict – When an error is encountered, DITA-OT stops processing

• lax (default) – When an error is encountered, DITA-OT attempts to recover from it

• skip – When an error is encountered, DITA-OT continues processing but does not
attempt error recovery

remove-broken-links

Remove broken related links. The allowed values are true and false; the default
value is false.

result.rewrite-rule.class

Specifies the name of the Java class used to rewrite filenames.

The custom class should implement the
org.dita.dost.module.RewriteRule interface.

result.rewrite-rule.xsl

Specifies the name of the XSLT file used to rewrite filenames.

See Adjusting file names in map-first pre-processing on page 171 for details.

root-chunk-override

Override for map chunk attribute value.

Acceptable values include any value normally allowed on the @chunk attribute. If the
map does not have a @chunk attribute, this value will be used; if the map already has
a @chunk attribute specified, this value will be used instead.

store-type

Temporary file store type. The allowed values are file and memory; the default
value is file.

In-memory processing provides performance advantages in I/O bound environments
such as cloud computing platforms, where processing time depends primarily on how
long it takes to read and write temporary files. For more information, see Store API –
Processing in memory on page 294.

Important: Custom plug-ins that expect to find certain files on disk in the
temporary directory will not work with in-memory processing.

transtype

Specifies the output format (transformation type).

This parameter corresponds to the command-line argument --format.

87

Configuring DITA-OT

You can create plug-ins to add new output formats; by default, the following values are
available:

• dita

• eclipsehelp

• html5

• htmlhelp

• markdown, markdown_gitbook, and markdown_github

• pdf

• xhtml

Tip: See Chapter 3 Output formats on page 23 for sample command line syntax and
more information on each transformation.

validate

Specifies whether DITA-OT validates the content. The allowed values are true and
false; the default value is true.

PDF parameters
Certain parameters are specific to the PDF transformation.

args.artlbl

Specifies whether to generate a label for each image; the label will contain the image
file name. The allowed values are yes and no; the default value is no.

args.bookmap-order

Specifies if the frontmatter and backmatter content order is retained in bookmap. The
allowed values are retain and discard; the default value is discard.

args.bookmark.style

Specifies whether PDF bookmarks are by default expanded or collapsed. The allowed
values are EXPANDED and COLLAPSE.

args.chapter.layout

Specifies whether chapter level TOCs are generated. The allowed values are MINITOC
and BASIC; the default value is MINITOC.

args.fo.userconfig

Specifies the user configuration file for FOP.

args.xsl.pdf

Specifies an XSL file that is used to override the default XSL transformation.

You must specify the fully qualified file name.

axf.cmd

Specifies the path to the Antenna House Formatter executable.

axf.opt

Specifies the user configuration file for Antenna House Formatter.

88

DITA-OT parameters

custom.xep.config

Specifies the user configuration file for RenderX.

customization.dir

Specifies the customization directory.

maxJavaMemory

Specifies the amount of memory allocated to the RenderX process.

org.dita.index.skip

Disable index processing. The allowed values are yes and no; the default value is no.

Up until DITA-OT 3.4, indexing code was provided in the PDF plug-in and only
available for PDF output. In version 3.4 and above, indexing is provided by a separate
plug-in to allow other transformations to access the results.

If you have overridden PDF index processing via the transform.topic2fo
target in the past, you can set the org.dita.index.skip property
to yes and re-enable the transform.topic2fo.index target with
<feature extension="depend.org.dita.pdf2.index"
value="transform.topic2fo.index"/> in your plug-in configuration.

org.dita.pdf2.chunk.enabled

Enables chunk attribute processing. The following values are supported:

• true – Enables chunk processing

• false (default) – Disables chunk processing

org.dita.pdf2.i18n.enabled

Enables internationalization (I18N) font processing to provide per-character font
selection for FO renderers that do not support the font-selection-strategy
property (such as Apache FOP prior to version 2.9).

When this feature is enabled, DITA-OT uses a font mapping process that takes the
content language into consideration. The mapping process uses configuration files for
each language to define characters that should be rendered with certain logical fonts,
and font mappings that associate each logical font to physical font files.

The following values are allowed:

• true (default) — Enables font mapping

• false — Disables font mapping

Tip: DITA-OT 4.2 includes FOP 2.9, which supports font-selection-
strategy. As of this version (or if you don’t use custom character mappings), you
can turn off font mapping and specify fonts directly in the XSL attributes files of
your custom PDF plug-in. For background information, see Font configuration in
PDF2.

outputFile.base

Specifies the base file name of the generated PDF file.

89

http://www.elovirta.com/2016/02/18/font-configuration-in-pdf2.html
http://www.elovirta.com/2016/02/18/font-configuration-in-pdf2.html

Configuring DITA-OT

By default, the PDF file uses the base filename of the input .ditamap file.

pdf.formatter

Specifies the XSL processor. The following values are supported:

• fop (default) – Apache FOP

• ah – Antenna House Formatter

• xep – RenderX XEP Engine

publish.required.cleanup

Specifies whether draft-comment and required-cleanup elements are included in the
output. The allowed values are yes, no, yes, and no.

The default value is the value of the args.draft parameter. Corresponds to the
XSLT parameter publishRequiredCleanup.

Notice: This parameter is deprecated in favor of the args.draft parameter.

theme

Theme configuration file.

xep.dir

RenderX installation directory.

HTML-based output parameters
Certain parameters apply to all HTML-based transformation types: HTML5, XHTML,
HTML Help, and Eclipse help.

args.artlbl

Specifies whether to generate a label for each image; the label will contain the image
file name. The allowed values are yes and no; the default value is no.

args.copycss

Specifies whether to copy the custom .css file to the output directory. The allowed
values are yes and no; the default value is no.

If an external process will copy your custom .css file to the output directory, leave this
parameter unset (or set it to no). If DITA-OT should copy the file when generating
output, set it to yes.

args.css

Specifies the name of a custom .css file.

The value of this parameter should be only the file name. The absolute path to the
parent directory should be specified with args.cssroot.

args.csspath

Specifies the destination directory to which .css files are copied (relative to the output
directory).

90

DITA-OT parameters

Corresponds to the XSLT parameter CSSPATH.

DITA-OT will copy the file to this location.

Tip: If args.csspath is not set, the custom CSS file (and the default CSS files)
will be copied to the root level of the output folder. To copy CSS files to an output
subfolder named css, set args.csspath to css.

args.cssroot

Specifies the source directory that contains the custom .css file.

DITA-OT will copy the file from this location.

Important: Enter the absolute path to the parent directory of the custom CSS file
specified with args.css.

args.dita.locale

Specifies the language locale file to use for sorting index entries.

Note: This parameter is not available for the XHTML transformation.

args.eclipse.provider

Specifies the name of the person or organization that provides the Eclipse help.

args.eclipse.symbolic.name

Specifies the symbolic name (aka plugin ID) in the output for an Eclipse Help project.

args.eclipse.version

Specifies the version number to include in the output.

args.eclipsehelp.country

Specifies the region for the language that is specified by the args.

args.eclipsehelp.jar.name

Specifies that the output should be zipped and returned using this name.

args.eclipsehelp.language

Specifies the base language for translated content, such as en for English.

args.ftr

Specifies an XML file that contains content for a running footer.

Corresponds to the XSLT parameter FTR.

Note: The footer file should be specified using an absolute path and must contain
valid XML. A common practice is to place all content into a <div> element. In
HTML5 output, the footer file contents will be wrapped in an HTML5 <footer>
element with the @role attribute set to contentinfo.

args.gen.default.meta

91

Configuring DITA-OT

Generate metadata for parental control scanners, meta elements with name="security"
and name="Robots". The allowed values are yes and no; the default value is no.

Corresponds to the XSLT parameter genDefMeta.

args.hdf

Specifies an XML file that contains content to be placed in the document head.

The contents of the header file will be inserted in the <head> element of the generated
HTML files.

Tip: The header file should be specified using an absolute path and must contain
valid XML. If you need to insert more than one element into the HTML page head,
wrap the content in a <div> element. The division wrapper in the header file will
be discarded when generating HTML files, and the contents will be inserted into
each page head.

args.hdr

Specifies an XML file that contains content for a running header.

Corresponds to the XSLT parameter HDR.

Note: The header file should be specified using an absolute path and must contain
valid XML. A common practice is to place all content into a <div> element.
In HTML5 output, the contents of the header file will be wrapped in an HTML5
<header> element with the @role attribute set to banner.

args.hide.parent.link

Specifies whether to hide links to parent topics in the HTML or XHTML output. The
allowed values are yes and no; the default value is no.

Corresponds to the XSLT parameter NOPARENTLINK.

Notice: This parameter is deprecated in favor of the args.rellinks parameter.

args.htmlhelp.includefile

Specifies the name of a file that you want included in the HTML Help.

args.indexshow

Specifies whether the content of <indexterm> elements are rendered in the output. The
allowed values are yes and no; the default value is no.

args.outext

Specifies the file extension for HTML or XHTML output.

Corresponds to the XSLT parameter OUTEXT.

args.xhtml.classattr

Specifies whether to include the DITA class ancestry inside the XHTML elements. The
allowed values are yes and no; the default value is yes.

92

DITA-OT parameters

For example, the <prereq> element (which is specialized from <section>)
would generate class="section prereq". Corresponds to the XSLT parameter
PRESERVE-DITA-CLASS.

Note: Beginning with DITA-OT release 1.5.2, the default value is yes. For release
1.5 and 1.5.1, the default value was no.

args.xhtml.contenttarget

Specifies the value of the @target attribute on the <base> element in the TOC file.

args.xhtml.toc

Specifies the base name of the TOC file.

args.xhtml.toc.class

Specifies the value of the @class attribute on the <body> element in the TOC file.

args.xhtml.toc.xsl

Specifies a custom XSL file to be used for TOC generation.

args.xsl

Specifies a custom XSL file to be used instead of the default XSL transformation.

The parameter must specify a fully qualified file name.

HTML5 parameters
The HTML5 transformation shares common parameters with other HTML-based
transformations and provides additional parameters that are specific to HTML5 output.

args.artlbl

Specifies whether to generate a label for each image; the label will contain the image
file name. The allowed values are yes and no; the default value is no.

args.copycss

Specifies whether to copy the custom .css file to the output directory. The allowed
values are yes and no; the default value is no.

If an external process will copy your custom .css file to the output directory, leave this
parameter unset (or set it to no). If DITA-OT should copy the file when generating
output, set it to yes.

args.css

Specifies the name of a custom .css file.

The value of this parameter should be only the file name. The absolute path to the
parent directory should be specified with args.cssroot.

args.csspath

Specifies the destination directory to which .css files are copied (relative to the output
directory).

93

Configuring DITA-OT

Corresponds to the XSLT parameter CSSPATH.

DITA-OT will copy the file to this location.

Tip: If args.csspath is not set, the custom CSS file (and the default CSS files)
will be copied to the root level of the output folder. To copy CSS files to an output
subfolder named css, set args.csspath to css.

args.cssroot

Specifies the source directory that contains the custom .css file.

DITA-OT will copy the file from this location.

Important: Enter the absolute path to the parent directory of the custom CSS file
specified with args.css.

args.dita.locale

Specifies the language locale file to use for sorting index entries.

args.ftr

Specifies an XML file that contains content for a running footer.

Corresponds to the XSLT parameter FTR.

Note: The footer file should be specified using an absolute path and must contain
valid XML. A common practice is to place all content into a <div> element. In
HTML5 output, the footer file contents will be wrapped in an HTML5 <footer>
element with the @role attribute set to contentinfo.

args.gen.default.meta

Generate metadata for parental control scanners, meta elements with name="security"
and name="Robots". The allowed values are yes and no; the default value is no.

Corresponds to the XSLT parameter genDefMeta.

args.hdf

Specifies an XML file that contains content to be placed in the document head.

The contents of the header file will be inserted in the <head> element of the generated
HTML files.

Tip: The header file should be specified using an absolute path and must contain
valid XML. If you need to insert more than one element into the HTML page head,
wrap the content in a <div> element. The division wrapper in the header file will
be discarded when generating HTML files, and the contents will be inserted into
each page head.

args.hdr

Specifies an XML file that contains content for a running header.

94

DITA-OT parameters

Corresponds to the XSLT parameter HDR.

Note: The header file should be specified using an absolute path and must contain
valid XML. A common practice is to place all content into a <div> element.
In HTML5 output, the contents of the header file will be wrapped in an HTML5
<header> element with the @role attribute set to banner.

args.hide.parent.link

Specifies whether to hide links to parent topics in the HTML5 output. The allowed
values are yes and no; the default value is no.

Corresponds to the XSLT parameter NOPARENTLINK.

Notice: This parameter is deprecated in favor of the args.rellinks parameter.

args.html5.classattr

Specifies whether to include the DITA class ancestry inside the HTML5 elements. The
allowed values are yes and no; the default value is yes.

args.html5.contenttarget

Specifies the value of the @target attribute on the <base> element in the TOC file.

args.html5.toc

Specifies the base name of the TOC file.

args.html5.toc.class

Specifies the value of the @class attribute on the <body> element in the TOC file.

args.html5.toc.xsl

Specifies a custom XSL file to be used for TOC generation.

args.indexshow

Specifies whether the content of <indexterm> elements are rendered in the output. The
allowed values are yes and no; the default value is no.

args.outext

Specifies the file extension for HTML5 output.

Corresponds to the XSLT parameter OUTEXT.

args.xsl

Specifies a custom XSL file to be used instead of the default XSL transformation.

The parameter must specify a fully qualified file name.

html5.toc.generate

Generate TOC file from the DITA map. The allowed values are yes and no; the
default value is yes.

nav-toc

Specifies whether to generate a table of contents (ToC) in the HTML5 <nav> element
of each page. The navigation can then be rendered in a sidebar or menu via CSS.

95

Configuring DITA-OT

The following values are supported:

• none (default) – No table of contents will be generated

• partial – Include the current topic in the ToC along with its parents, siblings and
children

• full – Generate a complete ToC for the entire map

XHTML parameters
Certain parameters are specific to the XHTML transformation.

args.xhtml.contenttarget

Specifies the value of the @target attribute on the <base> element in the TOC file.

The default value is contentwin. Change this value to use a different target name
for the table of contents.

args.xhtml.toc

Specifies the base name of the TOC file.

args.xhtml.toc.class

Specifies the value of the @class attribute on the <body> element in the TOC file.

args.xhtml.toc.xsl

Specifies a custom XSL file to be used for TOC generation.

Microsoft Compiled HTML Help parameters
Certain parameters are specific to the Microsoft Compiled HTML Help (.chm)
transformation.

args.htmlhelp.includefile

Specifies the name of a file that you want included in the HTML Help.

Eclipse Help parameters
Certain parameters are specific to the Eclipse help transformation.

args.eclipse.provider

Specifies the name of the person or organization that provides the Eclipse help.

The default value is DITA.

Tip: The toolkit ignores the value of this parameter when it processes an Eclipse
map.

args.eclipse.symbolic.name

Specifies the symbolic name (aka plugin ID) in the output for an Eclipse Help project.

96

DITA-OT parameters

The @id value from the DITA map or the Eclipse map collection (Eclipse help
specialization) is the symbolic name for the plugin in Eclipse. The default value is
org.sample.help.doc.

Tip: The toolkit ignores the value of this parameter when it processes an Eclipse
map.

args.eclipse.version

Specifies the version number to include in the output.

The default value is 0.0.0.

Tip: The toolkit ignores the value of this parameter when it processes an Eclipse
map.

args.eclipsehelp.country

Specifies the region for the language that is specified by the args.

For example, us, ca, and gb would clarify a value of en set for the
args.eclipsehelp.language parameter. The content will be moved into the
appropriate directory structure for an Eclipse fragment.

args.eclipsehelp.jar.name

Specifies that the output should be zipped and returned using this name.

args.eclipsehelp.language

Specifies the base language for translated content, such as en for English.

This parameter is a prerequisite for the args.eclipsehelp.country parameter.
The content will be moved into the appropriate directory structure for an Eclipse
fragment.

Other parameters
These parameters enable you to reload style sheets that DITA-OT uses for specific pre-
processing stages.

dita.html5.reloadstylesheet
dita.preprocess.reloadstylesheet
dita.preprocess.reloadstylesheet.clean-map
dita.preprocess.reloadstylesheet.conref
dita.preprocess.reloadstylesheet.lag-module
dita.preprocess.reloadstylesheet.mapref
dita.preprocess.reloadstylesheet.mappull
dita.preprocess.reloadstylesheet.maplink
dita.preprocess.reloadstylesheet.topicpull
dita.xhtml.reloadstylesheet

Specifies whether DITA-OT reloads the XSL style sheets that are used for the
transformation. The allowed values are true and false; the default value is false.

97

Configuring DITA-OT

During the pre-processing stage, DITA-OT processes one DITA topic at a time, using
the same XSLT stylesheet for the entire process. These parameters control whether
Ant will use the same Transformer object in Java, the object that handles the XSLT
processing, for all topics, or create a separate Transformer for each topic.

The default (false) option uses the same Transformer, which is a little faster,
because it will not need to parse/compile the XSLT stylesheets and only needs to read
the source trees with document() once. The downside is that it will not release the
source trees from memory, so you can run out of memory.

Tip: For large projects that generate Java out-of-memory errors during
transformation, set the parameter to true to allow the XSLT processor to release
memory. You may also need to increase the memory available to Java.

98

Configuration properties

Chapter 15 Configuration properties

DITA-OT uses .properties files and internal properties that store configuration
settings for the toolkit and its plug-ins. Configuration properties are available to both Ant
and Java processes, but unlike argument properties, they cannot be set at run time.

When DITA-OT starts the Ant process, it looks for property values in the following order and
locations:

1. Any property passed to Ant from the command line with -Dproperty or --
property=value

2. A custom property file passed with --propertyfile

3. A .ditaotrc configuration file in the current directory or any ancestor directory, in the
user’s home directory, or in the root directory of the DITA-OT installation

4. A local.properties file in the root directory of the DITA-OT installation

5. The lib/org.dita.dost.platform/plugin.properties file

6. The configuration.properties file

If a given property is set in multiple places, the first value “wins” and subsequent entries for the
same property are ignored.

You can use this mechanism to override DITA-OT default settings for your environment by
passing parameters to the dita command with --property=value, or using entries in
runtime configurations or .properties files.

.ditaotrc..99
local.properties... 100
plugin.properties...101
configuration.properties..101
Internal Ant properties.. 104

The .ditaotrc configuration file
As of DITA-OT 4.2, new files can be used to store DITA-OT runtime configurations in
multiple places to support fine-grained configuration layers.

DITA-OT looks for .ditaotrc configuration files in the current directory or any ancestor
directory first, then in the user’s home directory, and finally in the root directory of the
DITA-OT installation. These files are read in order and combined with the contents of the
local.properties file in the toolkit directory.

The first occurrence of a property takes precedence. This approach can be used to define multiple
layers of configuration, so personal defaults that apply to multiple projects can be stored in the
home folder, with local overrides in project folders.

For example, if the current directory includes a .ditaotrc file that sets

pdf.formatter=fop

99

Configuring DITA-OT

and the user’s home directory has a .ditaotrc file with the following content,

pdf.formatter=xep
args.grammar.cache=no

DITA-OT will be run as if the following options were set on the command line:

--pdf.formatter=fop --args.grammar.cache=no

Tip: As of DITA-OT 4.2, any configurations in local.properties files should be
migrated to .ditaotrc files.

The local.properties file
A local.properties file in the root directory of the DITA-OT installation can be
used to override the default values of various DITA-OT parameters.

Attention: The local.properties file is still supported for backwards compatibility, but
as of DITA-OT 4.2, any local configurations should be migrated to .ditaotrc configuration
files.

If you always use the same rendering engine to produce PDF output for all of your projects, you
could create a local.properties file in the root directory of your DITA-OT installation to
set the pdf.formatter parameter and additional options for the XSL processor:

1 #·Use·RenderX·XEP·Engine·for·PDF·output
2 pdf.formatter·=·xep
3

4 #·Specify·the·user·configuration·file·for·RenderX
5 custom.xep.config·=·/path/to/custom.config

Backslash “\” characters in .properties files must be escaped with a second backslash as “\\”. If
you use Antenna House Formatter on a Windows system, for example, you would set the path to
the command using a properties file entry like this:

1 #·Use·Antenna·House·Formatter·for·PDF·output
2 pdf.formatter·=·ah
3

4 #·Specify·the·path·to·the·Antenna·House·Formatter·command
5 axf.cmd=C:\\Program·Files\\Antenna·House\\AHFormatterV62

Note: This file can only be used to set Ant property values that can be passed as argument
parameters to the command line. The DITA-OT Java code does not read this file.

100

Configuration properties

The plugin.properties file
The plugin.properties file is used to store configuration properties that are set by
the plug-in installation process.

The file is located in the config/org.dita.dost.platform directory of the DITA-OT
installation and stores a cached version of the plug-in configuration used by the Java code.

The contents of this file depend on the installed plug-ins. Each plug-in may contribute properties
such as the path to the plug-in folder, supported extensions and print transformation types.

Warning: The plugin.properties file is regenerated each time the plug-in integration
process is run, so it should not be edited manually as these changes would be lost the next time
a plug-in is installed or removed.

The configuration.properties file
The configuration.properties file controls certain common properties, as well
as some properties that control PDF processing.

The contents of the config/configuration.properties file are added to the DITA-OT
configuration in the dost-configuration.jar file when the plug-in integration process
runs. The following properties are typically set in this file:

compatibility.keyref.treat-blank-as-empty

When set to true, this property enables a compatibility mode that processes key
references that contain only whitespace characters like earlier versions of DITA-
OT (prior to version 4.2.4). This behavior is not correct according to the DITA
specification, but this setting ensures that existing content that relies on this behavior
will be processed in the same way as in earlier versions. Set this property to false to
skip these references as intended in the DITA specification.

Warning: This property can only be set in configuration.properties.

default.cascade

Specifies the processing default value for the DITA 1.3 @cascade attribute, which
determines how map-level metadata attributes are applied to the children of elements
where the attributes are specified. DITA-OT uses the merge value by default for
backwards compatibility with DITA 1.2 and earlier.

Warning: This property can only be set in configuration.properties and
should not be modified.

temp-file-name-scheme

101

Configuring DITA-OT

This setting specifies the name of the Java class that defines how the source URL of
a topic is mapped to the URL of the temporary file name. The current default method
uses a 1:1 mapping, though future implementations may use alternative approaches
such as hashes or full absolute paths as file names.

Warning: This property can only be set in configuration.properties and
should not be modified.

filter-attributes

Specifies additional attributes to be used for filtering, in addition to those defined in the
DITA specification. The value is a comma-separated list of attribute QNames in Clark
notation.

For example, to permit filtering by @importance and @status attributes, set:

filter-attributes = importance, status

flag-attributes

Specifies additional attributes to be used for flagging, in addition to those defined in
the DITA specification. The value is a comma-separated list of attribute QNames in
Clark notation.

For example, to enable flagging based on a custom @cms:review attribute, set:

flag-attributes = {http://www.cms.com/}review

With this setting, a DITAVAL file could be used to flag content marked as new with a
purple background:

<val xmlns:cms="http://www.cms.com/">
 <prop action="flag" att="cms:review" val="new" backcolor="purple"/>
</val>

cli.color

Specifies whether the dita command prints colored output on the command line
console. When set to true, error messages in dita command output will appear in
red on terminals that support ANSI escape codes, such as on Linux or macOS. Set to
false to disable the color. (Colored output is not supported on Windows consoles
such as cmd.exe or PowerShell).

default.coderef-charset

Specifies the default character set for code references.

plugindirs

A semicolon-separated list of directory paths that DITA-OT searches for plug-ins
to install; any relative paths are resolved against the DITA-OT base directory. Any
immediate subdirectory that contains a plugin.xml file is installed.

102

https://en.wikipedia.org/wiki/ANSI_escape_code

Configuration properties

Tip: You can use this property to test custom plug-ins that are stored in other
locations. For example, to install all of the sample plug-ins that are included in the
DITA-OT documentation, append ;docsrc/samples/plugins to the property
value and run dita --install. You can maintain custom plug-ins in version-
controlled repositories outside of the DITA-OT installation directory, and add the
repository locations to the list of plug-in directories here to test your code.

plugin.ignores

A semicolon-separated list of directory names to be ignored during plug-in installation;
any relative paths are resolved against the DITA-OT base directory.

plugin.order

Defines the order in which plug-ins are processed. In XML catalog files, the order of
imports is significant. If multiple plug-ins define the same thing (differently), the first
catalog entry “wins”. DITA-OT uses this property to define the order in which catalog
entries are written. This mechanism is currently used to ensure that DITA 1.3 grammar
files take precedence over their DITA 1.2 equivalents.

registry

Defines the list (and order) of plug-in repositories that are searched for available plug-
ins during the installation process. In addition to the main plug-in registry at dita-
ot.org/plugins, you can create a registry of your own to store the custom plug-ins for
your company or organization. To add a new entry, append the URL for your custom
registry directory to the registry key value, separating each entry with a space. For
more information, see Chapter 20 Adding plug-ins via the registry on page 141.

org.dita.pdf2.i18n.enabled

Enables internationalization (I18N) font processing to provide per-character font
selection for FO renderers that do not support the font-selection-strategy
property (such as Apache FOP prior to version 2.9).

When this feature is enabled, DITA-OT uses a font mapping process that takes the
content language into consideration. The mapping process uses configuration files for
each language to define characters that should be rendered with certain logical fonts,
and font mappings that associate each logical font to physical font files.

The following values are allowed:

• true (default) — Enables font mapping

• false — Disables font mapping

Tip: DITA-OT 4.2 includes FOP 2.9, which supports font-selection-
strategy. As of this version (or if you don’t use custom character mappings), you
can turn off font mapping and specify fonts directly in the XSL attributes files of
your custom PDF plug-in. For background information, see Font configuration in
PDF2.

default.coderef-charset

103

https://www.dita-ot.org/plugins
https://www.dita-ot.org/plugins
http://www.elovirta.com/2016/02/18/font-configuration-in-pdf2.html
http://www.elovirta.com/2016/02/18/font-configuration-in-pdf2.html

Configuring DITA-OT

As of DITA-OT 3.3, the default character set for code references can be changed by
specifying one of the character set values supported by the Java Charset class.

Related information

DITA 1.3 specification: Cascading of metadata attributes in a DITA map
Example: How the @cascade attribute functions
Font configuration in PDF2

Internal Ant properties
DITA-OT uses these Ant properties in certain internal operations. They are not intended
for general use, but may be adjusted by plug-in developers to configure custom transform
types.

Attention: Internal properties are subject to change from one version of DITA-OT to another.

include.rellinks

A space-separated list of link roles to be output; the #default value token represents
links without an explicit role (those for which no @role attribute is defined). Defined
by args.rellinks, but may be overridden directly.

Valid roles include:

• parent

• child

• sibling

• friend

• next

• previous

• cousin

• ancestor

• descendant

• sample

• external

• other

temp.output.dir.name

This property can be used to place all output in an internal directory, so that a final step
in the transform type can do some form of post-processing before the files are placed in
the specified output directory.

For example, if a custom HTML5 transform sets the property to zip_dir, all
output files (including HTML, images, and CSS) will be placed within the directory
zip_dir in the temporary processing directory. A final step can then be used to add
more files, zip the directory, and return that zip to the designated output directory.

104

https://docs.oracle.com/javase/8/docs/api/java/nio/charset/Charset.html
http://docs.oasis-open.org/dita/dita/v1.3/errata01/os/complete/part1-base/archSpec/base/cascading-in-a-ditamap.html#cascading-in-a-ditamap
http://docs.oasis-open.org/dita/dita/v1.3/errata01/os/complete/part1-base/archSpec/base/example-how-cascade-att-functions.html
http://www.elovirta.com/2016/02/18/font-configuration-in-pdf2.html

Customizing HTML output

Chapter 16 Customizing HTML output

You can modify the look and feel of your HTML output by changing parameter settings
to include custom CSS, headers and footers, or table-of-contents navigation in topics.

Setting HTML parameters...105
Using a properties file...109

Setting parameters for custom HTML
For simple branded HTML pages, you can adjust the look and feel of the default output
to match your company style by setting parameters to include custom CSS, header
branding, or table-of-contents navigation in topics. (These changes do not require a
custom plug-in.)

Adding navigation to topics

In HTML5 output, you can set a parameter to include table-of-contents navigation in the
<nav> element of each page. The navigation can be rendered in a sidebar or menu via
CSS.

About this task

Earlier versions of DITA-OT used the TocJS transformation to render a JavaScript-based table of
contents in an XHTML frameset for topic navigation. Recent toolkit versions provide a modern
HTML5 navigation alternative.

As of DITA-OT 2.2, the nav-toc parameter can be used in HTML5 transformations to embed
navigation directly in topics using native HTML5 elements without JavaScript or framesets.

Procedure

1. Set the nav-toc parameter to one of the following options:

• The partial option creates a table of contents with the portion of the navigation
hierarchy that contains the current topic (along with its parents, siblings and children).

• The full option embeds the complete navigation for the entire map in each topic.

2. Optional: Add custom CSS rules to style the navigation.

105

Configuring DITA-OT

For example, the DITA-OT documentation stylesheet includes the following rules to place
the table of contents on the left side of the browser viewport and highlight the current topic in
bold:

 1 /*·Style·ToC·nav·as·sidebar·on·desktop·*/
 2 @media·screen·and·(min-width:·992px)·{
 3 ··nav.toc·{
 4 ····float:·left;
 5 ····width:·300px;
 6 ··}
 7 }
 8

 9 nav.toc·li.active·>·a·{
10 ··font-weight:·var(--font-weight-bold);
11 }

Results

Tip: For an example of HTML output generated using this method, see the HTML5 version of
the DITA-OT documentation included in the installation folder under doc/index.html.

Adding custom CSS

To modify the appearance of the default HTML output that DITA Open Toolkit
generates, you can reference a custom Cascading Style Sheet (CSS) file with the
typography, colors, and other presentation aspects that define your corporate identity.

About this task

You can use this approach when you need to adjust the look and feel of the default output for a
single project, but don’t want to create a custom DITA-OT plug-in.

You can version the CSS file along with the DITA source files in your project, so stylesheet
changes can be tracked along with modifications to topic content.

You may also find this approach useful as you develop a custom stylesheet. Once the CSS rules
stabilize, you can bundle the CSS file in a custom DITA-OT plug-in to ensure consistent HTML
output across projects.

Procedure

1. Create a custom CSS file and store it in your project along with your DITA source files.

Note: As a starting point, you can use the CSS file that is used for the DITA-OT
documentation. This file is available in the installation folder under docsrc/
resources/dita-ot-doc.css.

2. Set the args.css parameter to the name of your custom CSS file.

The value of this parameter should be only the file name. You can specify the absolute path to
the file with args.cssroot.

3. Set the args.copycss parameter to yes.

106

Customizing HTML output

This setting ensures that your custom CSS file will be copied to the output directory.

4. Set args.cssroot to the absolute path of the folder that contains your custom CSS file.

5. Optional: Set args.csspath to specify the location of the CSS file in the output folder.

If args.csspath is not set, the custom CSS file will be copied to the root level of the
output folder. To copy the CSS file to a subfolder named css, set args.csspath to css.

Results

Tip: For an example of HTML output generated using this method, see the HTML5 version of
the DITA-OT documentation included in the installation folder under doc/index.html.

Adding custom headers and footers

You add a custom header to include a publication title, company logo, or other common
branding elements in HTML output. A custom footer can also be added with copyright
information, legal boilerplate, or other fine print.

About this task

In HTML5 output, the contents of the header file will be wrapped in an HTML5 <header>
element with the @role attribute set to banner. The footer file contents are wrapped in an
HTML5 <footer> element with the @role attribute set to contentinfo.

For example, the DITA-OT documentation includes a simple header banner with the publication
title and a horizontal rule to separate the header from the generated topic content:

1 <div·class="header">
2 ··<p>DITA·Open·Toolkit</p>
3 ··<hr/>
4 </div>

Note: Header and footer files should be specified using absolute paths and must contain valid
XML. A common practice is to place all content into a <div> element.

Procedure

1. Set args.hdr to include an XML file as a running header that appears above the page
content.

2. Set args.ftr to include an XML file as a running footer that appears below the page
content.

3. Optional: Add custom CSS rules to style headers and/or footers.

107

Configuring DITA-OT

For example, the DITA-OT documentation stylesheet includes the following header rules:

 1 .header·{
 2 ··margin-bottom:·1rem;
 3 ··padding:·0·12px;
 4 }
 5

 6 .header·p·{
 7 ··color:·var(--headings-color);
 8 ··font-size:·1.5rem;
 9 ··margin:·0·0·16px;
10 }
11

12 .header·hr·{
13 ··border:·0;
14 ··border-bottom:·1px·solid·var(--secondary-light);
15 ··height:·0;
16 }

Results

Tip: For an example of HTML output generated using this method, see the HTML5 version of
the DITA-OT documentation included in the installation folder under doc/index.html.

Handling content outside the map directory

By default, DITA-OT assumes content is located in or beneath the directory containing
the DITA map file. The generate.copy.outer parameter can be used to adjust how
output is generated for content that is located outside the map directory.

Background

This is an issue in the following situations:

• The DITA map is in a directory that is a peer to directories that contain referenced objects.

• The DITA map is in a directory that is below the directories that contain the referenced
objects.

Let’s assume that the directory structure for the DITA content looks like the following:

images/
 fig.png
maps/
 start.ditamap
topics/
 topic.dita

The DITA map is in the maps directory, the topics are in the topics directory, and the images
are in the images directory.

Exclude content outside the map directory

Let’s assume that you run the HTML5 transformation. By default, DITA-OT uses the
generate.copy.outer parameter with a value of 1, which means that no output is
generated for content that is located outside the DITA map directory.

108

Customizing HTML output

You receive only the following output:

index.html
commonltr.css
commonrtl.css

The index.html file contains the navigation structure, but all the links are broken, since no
HTML files were built for the topics.

How do you fix this? By adjusting the parameter setting to shift the output directory.

Shift the output directory to include all content

To preserve the links to referenced topics and images and make it easier to copy the output
directory, set the generate.copy.outer parameter to 3.

Now your output directory structure resembles the structure of the source directory:

images/
 fig.png
maps/
 index.html
topics/
 topic.html
commonltr.css
commonrtl.css

The index.html file is in the maps directory, the HTML files for the topics are in the
topics directory, and the referenced images are in the images directory.

Tip: If args.csspath is not set, the default CSS files (and any custom CSS files specified
via args.css) will be copied to the root level of the output folder. To copy CSS files to an
output subfolder named css, set args.csspath to css.

Customizing HTML with a .properties file
You can also use a .properties file to reference a set of build parameters when
building output with the dita command. The DITA-OT documentation uses a
.properties file to include custom CSS, header branding, and table-of-contents
navigation in the HTML5 output.

Procedure

1. Create a .properties file to store the parameter settings for your customization.

Tip: You can use one of the sample .properties files from the DITA-OT
documentation as a starting point for your own customizations. These files are available in
the installation folder under docsrc/samples/properties/.

109

Configuring DITA-OT

For example:

 1 #·Directory·that·contains·the·custom·.css·file:
 2 args.cssroot·=·${args.input.dir}/css/
 3

 4 #·Custom·.css·file·used·to·style·output:
 5 args.css·=·style.css
 6

 7 #·Copy·the·custom·.css·file·to·the·output·directory:
 8 args.copycss·=·yes
 9

10 #·Location·of·the·copied·.css·file·relative·to·the·output:
11 args.csspath·=·branding
12

13 #·Generate·a·full·navigation·TOC·in·topic·pages:
14 nav-toc·=·full

Figure 15: The docsrc/samples/properties/sequence-html5.properties file

2. Reference your .properties file with the dita command when building your output.

dita --input=my.ditamap --format=html5 --propertyfile=my.properties

Results

Note: For an example of HTML output generated using this method, see the HTML5 version
of the DITA-OT documentation included in the installation folder under doc/index.html.

110

Customizing PDF output

Chapter 17 Customizing PDF output

You can adjust various aspects of PDF output by changing parameter settings or using a
theme file. For more complex customizations, you can create or install custom plug-ins.

For example:

• To print the file names of the graphics underneath figures, set args.artlbl to yes.

• To disable the subsection links on the first page of each chapter, set
args.chapter.layout to BASIC.

• To change the name of the PDF file to something other than the input map name, set
outputFile.base to the desired file name (without the .pdf extension).

Note: For the full list of settings for PDF output, see PDF parameters on page 88.

Customization approaches...111
Generating revision bars... 113
PDF themes... 114

PDF customization approaches
Various methods may be used to customize the PDF output that DITA Open Toolkit
produces. Each of these approaches have advantages and shortcomings that should be
considered when preparing a customization project.

Note: Some of these methods are considered “anti-patterns” with disadvantages that outweigh
their apparent appeal. In most cases, you should create a custom PDF plug-in.

Why not edit default files?

When first experimenting with PDF customization, novice users are often tempted to simply edit
the default org.dita.pdf2 files in place to see what happens.

As practical as this approach may seem, the DITA-OT project does not recommend changing any
of the files in the default plug-ins.

While this method yields quick results and can help users to determine which files and templates
control various aspects of PDF output, it quickly leads to problems, as any errors may prevent the
toolkit from generating PDF output.

Warning: Any changes made in this fashion would be overwritten when upgrading to newer
versions of DITA-OT, so users that have customized their toolkit installation in this way are
often “stuck” on older versions of the toolkit and unable to take advantage of improvements in
recent versions of DITA-OT.

111

Configuring DITA-OT

Using the Customization folder

The original Idiom plug-in used its own extension mechanism to provide overrides to the
PDF transformation. With this approach, a dedicated folder within the plug-in is used to store
customized files.

Files in the org.dita.pdf2/Customization folder can override their default
counterparts, allowing users to adjust certain aspects of PDF output without changing any of the
plug-in’s default files, or specifying additional parameters when generating output.

Important: While this approach is slightly better than editing default files in place, it can still
cause problems when upgrading the toolkit to a new version. Since the Customization
folder is located within the org.dita.pdf2 plug-in’s parent directory, users must take care
to preserve the contents of this folder when upgrading to new toolkit versions.

Although recent versions of DITA-OT still support this mechanism to ensure backwards
compatibility, this practice is deprecated in favor of custom PDF plug-ins.

Tip: Users who have used the Customization folder to modify the default PDF output
are encouraged to create a custom PDF plug-in instead. In many cases, this may be as
simple as copying the contents of the Customization folder to a new subfolder in the
plugins folder and creating the necessary plugin.xml file and an Ant script to define the
transformation type.

Specifying an external customization directory

To ensure that overrides in customization folders are not overwritten when upgrading DITA-OT
to a new release, an external customization directory can be specified at build time or in build
scripts via the customization.dir parameter.

This method is preferable to the use of the org.dita.pdf2/Customization folder,
as the contents of external folders are unaffected when upgrading DITA-OT. In distributed
environments, users can use local installations of DITA-OT, yet still take advantage of common
customizations stored in a network location available to the entire team, such as a shared drive.

It can also be useful in environments where corporate policy, CMS permissions, or network
access rights prevent changes to the toolkit installation, which may prohibit the installation of
custom plug-ins.

Tip: Users who specify external customization directories via customization.dir are
encouraged to create a custom PDF plug-in if possible.

Combining custom plug-ins & customization directories

A common custom plug-in may be used to store base overrides that are applicable to all company
publications, and the customization.dir parameter can be passed at build time to override
individual settings as necessary for a given project or publication.

112

Customizing PDF output

In this case, any settings in the customization directory will take precedence over their
counterparts in the custom plug-in or default org.dita.pdf2 plug-in.

This approach allows a single custom plug-in to be shared between multiple publications or the
entire company, without the need to create additional plug-in dependencies per project.

However, the use of multiple customization mechanisms can make it difficult to debug the
precedence cascade and determine the origin of local formatting or processing overrides.

Tip: In most scenarios, the use of dedicated PDF customization plug-ins is preferable.
Common customizations can be bundled in one plug-in, and any project-specific overrides
can be maintained in separate plug-ins that build on the base branding or other settings in the
common custom plug-in.

Generating revision bars
You can generate revision bars in your PDF output by using the @changebar and
@color attributes of the DITAVAL <revprop> element.

The DITA specification for the @changebar attribute of the <revprop> element simply says:

@changebar When flag has been set, specify a
changebar color, style, or character,
according to the changebar support of the
target output format. If flag has not been
set, this attribute is ignored.

The current version of DITA Open Toolkit uses two <revprop> attribute values to define
revision bars:

• The @changebar attribute value defines the style to use for the line. The list of possible
values is the same as for other XSL-FO rules (see @change-bar-style). The default value is
groove.

• The @color attribute value specifies the change bar color using any color value recognized
by XSL-FO, including the usual color names or a hex color value. The default value is
black.

<revprop action="flag" changebar="solid" color="green"/>

Figure 16: Sample revision bar configuration

DITA-OT uses a default offset of 2 mm to place the revision bar near the edge of the text column.
The offset, placement and width are not currently configurable via attribute values.

XSL-FO 1.1 does not provide for revision bars that are not rules, so there is no way to get text
revision indicators instead of rules, for example, using a number in place of a rule. Antenna
House Formatter provides a proprietary extension to enable this, but the DITA-OT PDF
transformation does not take advantage of it.

113

http://docs.oasis-open.org/dita/dita/v1.3/errata02/os/complete/part3-all-inclusive/langRef/ditaval/ditaval-revprop.html#ditaval-revprop
http://www.w3.org/TR/xsl/#change-bar-style

Configuring DITA-OT

PDF themes
DITA-OT 4.0 includes the com.elovirta.pdf plug-in, which extends the default
PDF2 plug-in with a new theme parameter. The --theme option takes a path to a
theme file and changes the styling of the PDF output without requiring changes to XSLT
stylesheets.

Themes can be used to adjust basic settings like cover page images, page sizes, numbering, font
properties, background colors and borders, spacing, and running content like page headers and
footers.

To generate PDF output with a custom theme, pass the theme file to the dita command with the
--theme option:

dita --project=samples/project-files/pdf.xml \
 --theme=path/to/custom-theme-file.yaml

The following topics provide details on the theme file formats and supported configuration
options.

Sample theme file

Theme files can be written in either JSON or YAML format. The docsrc/samples/
themes folder in the DITA-OT installation directory provides several examples.

Note: The examples provided here are all in YAML format, which is generally more compact
and readable than JSON.

The YAML theme file used to produce the PDF output for the DITA-OT documentation is
included in the installation directory as dita-ot-dir/docsrc/samples/themes/dita-
ot-docs-theme.yaml.

The examples below include excerpts from this theme that show common customizations. You
can adapt these examples for your own requirements.

Tip: For an overview of the elements and other settings that the theme plug-in supports, see
Styles on page 123, Page settings on page 118, Header and footer on page 118, and
Variables on page 131.

114

https://json.org
https://yaml.org

Customizing PDF output

Setting custom colors

Like in CSS or Sass, you can use Variables on page 131 to define brand colors and other
shared values, and re-use these them in other Styles on page 123 using semantic references
such as $brand-color-primary.

brand:
··color:
····inverse:·'#e9ecef'
····links:·'#3563ab'
····note:
······background:
········attention:·'#fff3cd'
········caution:·'#f8d7da'
········info:·'#dce4f0'
········tip:·'#d1e7dd'
····primary:·'#1d365d'
····secondary:·'#6c757d'
····tertiary:·'#bac8d1'
····xml-domain:·'#639'

Figure 17: Color variables in dita-ot-dir/docsrc/samples/themes/dita-ot-docs-theme.yaml

The primary and secondary brand colors defined above are used in the examples below under
Setting up headers and footers on page 116 and Adding an image to the cover page on page
117. The theme sample also defines custom brand colors for links, note backgrounds, and
XML domain markup.

Defining custom font stacks

You can also use Variables on page 131 to specify a prioritized list of one or more font family
names and reference these values in the font-family property of other style keys.

pdf2:
··font:
····monospaced:·'Courier·New,·Courier,·Arial·Unicode·MS,·Tahoma,·Batang,·SimSun'
····sans:·'Helvetica,·Arial·Unicode·MS,·Tahoma,·Batang,·SimSun'
····serif:·'Times·New·Roman,·Times,·Arial·Unicode·MS,·Tahoma,·Batang,·SimSun'

Figure 18: Font families in dita-ot-dir/docsrc/samples/themes/dita-ot-docs-theme.yaml

This theme uses the default font stacks from the default org.dita.pdf2 plug-in, but the same
approach can be used to define other font families as required by your corporate identity.

The font variables defined here under the pdf2 prefix could just as well be added to the
brand key, or under a company name prefix and re-used elsewhere with references such as
$company-font-sans.

Defining page sizes

Page settings on page 118 include page size, orientation, and margins.

page:
··mirror-margins:·true
··size:·PA4

Figure 19: Page settings in dita-ot-dir/docsrc/samples/themes/dita-ot-docs-theme.yaml

The DITA-OT documentation theme uses the PA4 page size, a 21 × 28 cm transitional format
suitable for printing on both A4 and US Letter paper.

115

http://sass-lang.com

Configuring DITA-OT

The mirror-margins key sets up facing pages for double-sided documents, so the margins of
the left page are a mirror image of those on the right.

Extending and overriding themes

You can extend one theme with another. The samples in the DITA-OT installation directory
include additional theme files that can be used to override the PA4 page size in the
documentation theme with either A4 or Letter.

#·Sample·PDF·theme·that·changes·page·size·for·printing·on·A4·paper
extends:·./dita-ot-docs-theme.yaml
page:
··size:·A4

Figure 20: Switching page size to A4 with dita-ot-dir/docsrc/samples/themes/dita-ot-
docs_A4.yaml

#·Sample·PDF·theme·that·changes·page·size·for·printing·on·US·Letter·paper
extends:·./dita-ot-docs-theme.yaml
page:
··size:·Letter

Figure 21: Switching page size to Letter with dita-ot-dir/docsrc/samples/themes/dita-ot-
docs_Letter.yaml

When one of these theme extensions is passed to the dita command via the --theme option,
the page-size value in the extending theme takes precedence over the original value in
dita-ot-docs-theme.yaml.

If you add any new keys to a theme extension, they will be overlaid onto the keys from the
extended theme.

Setting up headers and footers

The documentation theme includes sample customizations to adjust the content of the running
headers and footers that appear on each page.

header:
··color:·$brand-color-secondary
··display-align:·before
··end-indent:·10mm
··even:
····content:·'{part-title}'
····text-align:·start
··font-family:·$pdf2-font-sans
··odd:
····content:·'{chapter-title}'
····text-align:·end
··padding-after:·6pt
··padding-before:·12pt
··start-indent:·10mm

Figure 22: Formatting headers and running content in dita-ot-dir/docsrc/samples/themes/dita-
ot-docs-theme.yaml

116

Customizing PDF output

These settings use the secondary brand color for page headers (as defined above under Setting
custom colors on page 115), the sans-serif font families defined above under Defining custom
font stacks on page 115, and position the content with indentation and padding.

footer:
··color:·$brand-color-secondary
··end-indent:·10mm
··even:
····content:·'{folio}'
····font-weight:·bold
····text-align:·start
··font-family:·$pdf2-font-sans
··odd:
····content:·'{folio}'
····font-weight:·bold
····text-align:·end
··padding-after:·12pt
··padding-before:·6pt
··start-indent:·10mm

Figure 23: Formatting footers and page numbers in dita-ot-dir/docsrc/samples/themes/dita-
ot-docs-theme.yaml

These settings use the {folio} field to place the current page number on the outside edges
of each page footer. The content key may include combinations of static text, or reference
variables using curly braces. For details on the available options, see Header and footer on page
118 and Variables on page 131.

Adding an image to the cover page

The cover and cover-title Styles on page 123 can be used to add a background image
and adjust the formatting and placement of the document title.

cover:
··background-image:·dita-ot-logo-inverse.svg
··background-repeat:·no-repeat
··height:·25.7cm
cover-title:
··color:·$brand-color-primary
··font-size:·36pt
··font-weight:·bold
··line-height:·1.5
··space-before:·195mm

Figure 24: Cover page settings in dita-ot-dir/docsrc/samples/themes/dita-ot-docs-
theme.yaml

The DITA-OT documentation theme references a background image stored in the same folder
as the theme file, and places the title at the bottom of the page by setting the space-before
property for the cover-title.

Tip: The latest version of the documentation theme is available on GitHub: dita-ot-docs-
theme.yaml.

117

https://github.com/dita-ot/docs/blob/develop/samples/themes/dita-ot-docs-theme.yaml
https://github.com/dita-ot/docs/blob/develop/samples/themes/dita-ot-docs-theme.yaml

Configuring DITA-OT

Page settings

Page size and orientation can be set with the size and orientation keys. Page
margins are set with the top, outside, bottom, and inside keys.

page:
 size: A4
 orientation: portrait
 top: 20mm
 outside: 20mm
 bottom: 20mm
 inside: 30mm
 mirror-margins: true

The size key supports the following values:

• A3

• A4

• A5

• Executive

• JIS B5

• Tabloid

• Legal

• Letter

• PA4

If a required page size is not supported, height and width keys can be used to define the page
size.

Use the mirror-margins key to set up facing pages for double-sided documents.

When this key is set to true, the margins of the left page are a mirror image of those on the right
page. The inside margins of left and right pages are the same, and the outside margins of
left and right pages are identical.

The mirror margins setting defaults to false.

Header and footer

The content key in header or footer can be used to add text to running header or
footer content. Content can include static text, or reference variables using curly braces.

The following variable fields are currently supported:

• {title}: Map title

• {chapter-or-part-or-appendix}: Map chapter, part, or appendix number and title

• {chapter}: Map chapter number and title

• {chapter-title}: Map chapter title

• {chapter-number}: Map chapter number

• {part}: Map part number and title

• {part-title}: Map part title

118

Customizing PDF output

• {part-number}: Map part number

• {appendix}: Map appendix number and title

• {appendix-title}: Map appendix title

• {appendix-number}: Map appendix number

• {folio}: Current page number

• {folio-with-total}: Current page number with total number of pages

• {page-number}: Current page number

• {page-count}: Total number of pages

• {year}: Current year

header:
 content: '{title} — {chapter}'
 border-bottom: solid 1pt black

Header and footer size and alignment

To adjust the placement of page headers and footers, define the Page settings and use the
extent and display-align keys.

page:
 size: A4
 # The body content starts 30 mm from top of page edge.
 top: 30mm
 outside: 20mm
 # The body content ends 30 mm from bottom of page edge.
 bottom: 30mm
 inside: 20mm
header:
 content: '{title}'
 # The header starts directly from top of page edge and is 20 mm high.
 extent: 20mm
 # The header starts 20 mm from start/left of page edge
 start-indent: 20mm
 # The header content is vertically aligned to bottom of header.
 display-align: after
footer:
 content: '{folio-with-total}'
 # The footer starts directly from bottom of page edge and is 20 mm high.
 extent: 20mm
 # The footer starts 20 mm from start/left of page edge
 start-indent: 20mm
 # The footer content is vertically aligned to top of footer.
 display-align: before

If extent is not set, the value defaults to page top for header and page bottom for footer.

Simple header and footer

The same headers and footers can be used on all pages.

header:
 content: '{title}'
 start-indent: 10mm
 end-indent: 10mm
 border-bottom: solid 1pt black
 text-align: center
footer:
 content: '{folio-with-total}'
 start-indent: 10mm
 end-indent: 10mm
 border-top: solid 1pt black
 text-align: center

119

Configuring DITA-OT

120

Customizing PDF output

Duplex header and footer

To define separate headers or footers for recto (right) and verso (left) pages, use the odd
and even keys.

Generate duplex header and footer
mirror-page-margins: true
header:
 start-indent: 10mm
 end-indent: 10mm
 padding-after: 6pt
 border-bottom: solid 1pt black
 odd:
 content: '{title}'
 # On odd/right/recto pages, horizontally align content to end/right side.
 text-align: end
 even:
 content: '{chapter}'
 # On even/left/verso pages, horizontally align content to start/left side.
 text-align: start
footer:
 start-indent: 10mm
 end-indent: 10mm
 padding-after: 6pt
 border-bottom: solid 1pt black
 odd:
 content: '{folio-with-total}'
 text-align: end
 even:
 content: '{folio-with-total}'
 text-align: start

121

Configuring DITA-OT

122

Customizing PDF output

Header image

To add an image to page headers, use the background-image key and adjust the
placement via padding, space-before, start-indent, etc.

header:
 content: 'DITA-OT'
 # Text starts 25 mm from left page edge.
 start-indent: 25mm
 # Header starts 10 mm from top page edge.
 space-before: 10mm
 # Header height is 10 mm
 line-height: 10mm
 # Image left edge is 15 mm from left text edge (10 mm from left page edge)
 padding-left: 15mm
 text-align: start
 font-family: Helvetica
 dominant-baseline: middle
 # 10 mm x 10 mm image
 background-image: dita-ot-logo.svg
 background-repeat: no-repeat

Styles

The presentation of various block and inline elements can be adjusted by setting style
keys. Each category takes XSL-FO key definitions and keys specific to that style.

While the style keys may look like CSS, the keys are XSL-FO properties and the underlying
PDF2 plug-in does not use CSS compatibility properties.

• Instead of padding-top, use padding-before.

• Instead of margin-left, use start-indent. Note that these two keys do not have
matching semantics, see XSL 1.1.

123

https://www.w3.org/TR/xsl11/#refine-margin-space-indent

Configuring DITA-OT

The built-in default theme defines base key values that extend the PDF2 default styling.
To define common settings of your own, create a theme file for shared settings, and use the
extends key in other themes to build on the common foundation.

style:
 body:
 font-family: serif
 font-size: 12pt
 space-after: 6pt
 space-before: 6pt
 start-indent: 25pt
 topic:
 font-family: sans-serif
 font-size: 26pt
 link:
 color: blue
 text-decoration: underline

XSL-FO extension properties

In addition to the block and inline styles, themes support XSL-FO extension properties
implemented by XSL formatters:

• background-size: [<length> | <percentage> | auto]{1,2} — Size of
background image.

Block styles

The presentation of block elements can be adjusted by setting style keys. Block keys
support styling properties from XSL fo:block and XSL extensions.

Block keys

appendix

Appendix title.
appendix-toc

Appendix table of contents.

• maximum-level: <n> — Number of TOC levels to show

appendix-toc-<n>

TOC entry in appendix TOC. <n> is a number ranging from 1 to 6, representing each of
the six TOC entry levels.

body

Default body text, for example <p> elements.
chapter

Chapter title.

• title-numbering: 'true' | 'false'

chapter-toc

Chapter table of contents.

• maximum-level: <n> — Number of TOC levels to show

chapter-toc-<n>

124

https://www.w3.org/TR/xsl11/#fo_block

Customizing PDF output

TOC entry in chapter TOC. <n> is a number ranging from 1 to 6, representing each of
the six TOC entry levels.

codeblock

Code block element.

• line-numbering: 'true' | 'false' — Line numbering.

• show-whitespace: 'true' | 'false' — Show whitespace characters.

cover

Cover page.
cover-title

Cover page title.

• content: content-template

cover-titlealt

Cover page subtitle or alternative title.
dl

Definition list element.

• dl-type: 'table' | 'list' | 'html' — Style definition list as bulleted list or
indented list.

example

Example element.
example-title

Example element title.
fig

Figure element.

• caption-number: 'chapter' | 'document' — Number figures with chapter
prefix or use whole document numbering.

• caption-position: 'before' | 'after' — Place figure caption before or after
figure.

fig-caption

Figure caption.

• content: Contents of figure caption. Supported fields are:

• number: caption number

• title: caption contents

glossary

Glossary title.
h<n>

Topic titles. <n> is a number ranging from 1 to 6, representing each of the six heading
levels.

• title-numbering: 'true' | 'false'

hazardstatement

125

Configuring DITA-OT

Hazard statement element.
hazardstatement-label

Hazard statement label element.
hazardstatement-<type>-label

Label for hazard statement elements with @type.
index

Index title.
note

Note element with @type note or without @type.
note-label

Label for note elements.

• content — Content template.

note-<type>

Note element with @type. Type values are:

• note

• tip

• fastpath

• restriction

• important

• remember

• attention

• caution

• notice

• danger

• warning

• trouble

• other

To add an image to a note, use the background-image property.

style:
 note-other:
 background-image: legal.svg
 background-repeat: no-repeat
 # image width plus padding
 padding-start: 60pt + 1em
 # image width plus parent indentation
 start-indent: 60pt + from-parent(start-indent)

note-<type>-label

Label for note elements with @type.

• content — Content template.

ol

Ordered list.
parml

Parameter list element.
part

126

Customizing PDF output

Part title.

• title-numbering: 'true' | 'false'

part-toc

Part table of contents.

• maximum-level: <n> — Number of TOC levels to show

part-toc-chapter

Bookmap chapter TOC entry in part TOC.
part-toc-<n>

TOC entry in part TOC. <n> is a number ranging from 1 to 6, representing each of the
six TOC entry levels.

pd

Parameter definition element within a parameter list entry.
plentry

Parameter list entry element.
pre

Preformatted element.
pt

Parameter term element within a parameter list entry.
section

Section element.
section-title

Section element title.
shortdesc

Short description and abstract styles.
table

Table element.

• caption-number: 'chapter' | 'document' — Number figures with chapter
prefix or use whole document numbering.

• caption-position: 'before' | 'after' — Place figure caption before or after
figure.

• table-continued: 'true' | 'false' — Output "table continued" when table
breaks across pages.

table-caption

Table caption.

• content: content-template — Contents of table caption. Supported fields are:

• number: caption number

• title: caption contents

table-header

Table header row
task-labels

Boolean key to generate default section labels for tasks.
toc

127

Configuring DITA-OT

Table of contents.

• maximum-level: <n> — Number of TOC levels to show

toc-appendix

Bookmap appendix TOC entry.
toc-chapter

Bookmap chapter TOC entry.
toc-part

Bookmap part TOC entry.
toc-<n>

TOC entry in main TOC. <n> is a number ranging from 1 to 6, representing each of the
six TOC entry levels.

ul

Unordered list.

Inline styles

The presentation of inline elements can be adjusted by setting style keys. Inline keys
support styling properties from XSL fo:inline and XSL extensions.

Inline keys

apiname

API name element.
b

Bold highlighting element.
cmdname

Comment name element.
codeph

Code phrase element.
delim

Syntax delimiter character element.
filepath

File path element.
fragment

Syntax fragment element.
fragref

Syntax fragment reference element.
groupchoice

Group choice element.
groupcomp

Group composite element.
groupseq

Group sequence element.
i

Italic highlighting element.
keyword

128

https://www.w3.org/TR/xsl11/#fo_inline

Customizing PDF output

Keyword element.
kwd

Syntax keyword element.
line-through

Strikethrough highlighting element.
link

Link elements.

• link-url: 'true' | 'false' — Output URL for external links after explicitly
defined link text. Defaults to false.

• link-page-number: 'true' | 'false' — Generate page number reference after
link text. Defaults to true.

• content: content-template — Link text template. Supported fields are:

• link-text: link text

• pagenum: page number reference

link-external

External link elements.

• content: content-template — Link text template. Supported fields are:

• link-text: link text

• url: link URL

markupname

Named markup token element.
menucascade

Menu cascade element used to document a series of menu choices.

• separator-content: content-template — Separator between uicontrol
elements, defaults to “>”.

numcharref

XML character reference element.
oper

Syntax operator element.
option

Option element.
overline

Overline highlighting element.
parameterentity

XML parameter entity element.
parmname

Parameter name element.
repsep

Syntax repeat separator character element.
screen

Screen element.
sep

129

Configuring DITA-OT

Syntax separator character element.
shortcut

Keyboard shortcut element.
sub

Subscript highlighting element.
sup

Superscript highlighting element.
synblk

Syntax block element.
synnote

Syntax note element.
synnoteref

Syntax note reference element.
synph

Syntax phrase element.
syntaxdiagram

Syntax diagram element.
systemoutput

System output element.
term

Term element.
textentity

XML text entity element.
tm

Trademark element.

• symbol-scope: 'always' | 'chapter' | 'never' — Output trademark
symbol always, once per chapter, or never.

tt

Teletype highlighting element.
u

Underline highlighting element.
uicontrol

User interface control element.
userinput

User input element.
var

Syntax variable element.
varname

Variable name element.
wintitle

Window or dialog title element.
xmlatt

XML attribute element.
xmlelement

XML element element.
xmlnsname

130

Customizing PDF output

XML namespace name element.
xmlpi

XML processing instruction element.

Variables

Theme key values can use variables to reference settings in other keys. Any previously
defined key can be referenced in the value of another key.

Variable references are text values that start with a dollar sign ($). Variable declarations are
normal keys where the name of the key is a concatenated value of flattened key names separated
with a hyphen (-).

The example below shows how to set a custom color value and header font, and point to those
values in style keys.

brand:
 primary-color: orange
 font:
 header: Helvetica
style:
 topic:
 color: $brand-primary-color
 font-family: $brand-font-header

Extending themes

A theme can extend another theme using the extends key.

If the value is default, it resolves to the built-in default theme. Otherwise the value of
extends is a relative path from the current theme file to the theme being extended. If a theme
doesn't have an extends key, default PDF2 plug-in styles are used.

base.yaml

brand:
 primary-color: orange
page:
 size: A4

product/theme.yaml

extends: ../base.yaml
page:
 size: Letter
style:
 topic:
 color: $brand-primary-color

131

Configuring DITA-OT

Syntactic sugar

Theme files can use syntactic sugar to make them easier to read and write. When theme
files are read, any shorthand keys are “desugared” to their more verbose equivalents
before they are passed to the stylesheet generator.

Content

The authoring format of the content key is a DSL that supports field and variable
references mixed with text.

You can reference DITA-OT variables by name by prefixing them with the number sign # and
wrapping them in braces { }. For example:

content: '{#copyright} {year} ACME Corporation'

desugars to

content:
 - kind: variable
 value: copyright
 - kind: text
 value: ' '
 - kind: field
 value: year
 - kind: text
 value: ' ACME Corporation'

which would result in a line like this:

© 2022 ACME Corporation

Page dimensions

When page dimensions are defined using the size and orientation keys, they are
desugared to width and height keys using a mapping table for known page sizes.

page:
 size: A4

desugars to

page:
 width: 210mm
 height: 297mm

Header and footer

Style keys for header and footer are collected under the odd and even keys.

header:
 color: silver
 odd:
 font-weight: bold

132

https://en.wikipedia.org/wiki/Syntactic_sugar
https://en.wikipedia.org/wiki/Domain-specific_language

Customizing PDF output

desugars to

header:
 odd:
 font-weight: bold
 color: silver
 even:
 color: silver

Topic titles

Style keys h1, h2, h3, h4, h5, and h6 are desugared to topic, topic-topic,
topic-topic-topic, topic-topic-topic-topic, topic-topic-topic-
topic-topic, and topic-topic-topic-topic-topic-topic, respectively.

style:
 h2:
 font-weight: bold

desugars to

header:
 topic-topic:
 font-weight: bold

133

Configuring DITA-OT

134

Part 5 Extending DITA-OT with plug-ins

You can extend DITA Open Toolkit with plug-ins that change the default
transformations, add new output formats, or implement DITA specializations. A variety
of open source plug-ins are available from the plug-in registry at dita-ot.org/plugins.

Chapter 18 Installing plug-ins...137
Chapter 19 Removing plug-ins... 139
Chapter 20 Plug-in registry...141
Chapter 21 Creating plug-ins..145
Chapter 22 Rebuilding documentation... 241

135

https://www.dita-ot.org/plugins

Extending DITA-OT with plug-ins

136

Installing plug-ins

Chapter 18 Installing plug-ins

Use the dita install subcommand to install plug-ins.

Procedure

At the command-line prompt, enter the following command:

dita install <plug-in>

where:

• the optional <plug-in> argument is one of the following:

• the unique ID of the plug-in as defined in the plug-in registry at dita-ot.org/plugins (or a
local registry)

• the remote URL of the plug-in’s distribution ZIP file

• the name of a local ZIP file

Tip: If no ID, URL, or file argument is provided, the installation process reloads the
current set of plug-ins from the plugins directory (or any custom locations defined via
the pluginsdir property in the configuration.properties file in the config
directory). This approach can be used to add or remove multiple plug-ins at once, or any
individual plug-ins you have already copied to (or removed from) the plug-in directories. Any
plug-ins added or removed in the process will be listed by their plug-in ID.

137

https://www.dita-ot.org/plugins

Extending DITA-OT with plug-ins

138

Removing plug-ins

Chapter 19 Removing plug-ins

Use the dita uninstall subcommand to remove a plug-in.

Procedure

At the command-line prompt, enter the following command:

dita uninstall <plug-in-id>

where:

• <plug-in-id> is the unique ID of the plug-in, as defined in the plug-in’s configuration file
(plugin.xml).

Attention: The uninstall subcommand also removes the corresponding plug-in directory
from the plugins folder.

139

Extending DITA-OT with plug-ins

140

Adding plug-ins via the registry

Chapter 20 Adding plug-ins via the registry

DITA-OT supports a plug-in registry that makes it easier to discover and install new
plug-ins. The registry provides a searchable list of plug-ins at dita-ot.org/plugins.

In the past, installing plug-ins required you to either download a plug-in to your computer and
provide the path to the plug-in archive (.zip file) or pass the URL of the plug-in distribution file to
the dita command and let DITA-OT download the file. This required that you know the URL of
the plug-in distribution package.

Installing plug-ins from the registry

With the registry, you can now search the list of available plug-ins at dita-ot.org/plugins and
install new plug-ins by name and optional version.

Search the registry for a plug-in and install it by providing the plug-in name to the dita
command.

dita --install=<plugin-name>

If the registry includes multiple versions of the same plug-in, you can specify the version to
install as follows:

dita --install=<plugin-name>@<plugin-version>

If the plug-in requires other plug-ins, those are also installed recursively.

For example, to revert PDF output to the legacy PDF2 layout that was the default in DITA-OT
before 2.5, install the org.dita.pdf2.legacy plug-in as follows:

dita --install=org.dita.pdf2.legacy

If a matching plug-in cannot be found, an error message will appear. Possible reasons for failure
include:

• A plug-in with the specified name was not found in the registry

• A plug-in with the specified version was not found in the registry

• The specified plug-in version is not compatible with the installed DITA-OT version

• None of the available plug-in versions are compatible with the installed DITA-OT version

Publishing plug-ins to the registry

The contents of the DITA Open Toolkit plug-in registry are stored in a Git repository at
github.com/dita-ot/registry. New plug-ins or new versions can be added by sending a pull request
that includes a single new plug-in entry in JavaScript Object Notation (JSON) format.

141

https://www.dita-ot.org/plugins
https://www.dita-ot.org/plugins
https://github.com/dita-ot/registry
https://help.github.com/articles/about-pull-requests/

Extending DITA-OT with plug-ins

Note: As for all other contributions to the project, pull requests to the registry must be signed
off by passing the --signoff option to the git commit command to certify that you have
the rights to submit this contribution. For more information on this process, see signing your
work.

The version entries for each plug-in are stored in a file that is named after the plug-in ID as
<plugin-name>.json. The file contains an array of entries with a pre-defined structure. You
should have one entry for each supported version of the plug-in.

Table 1: Plug-in version entry structure

Key Mandatory Description

name yes Plug-in name

vers yes Plug-in version in semantic versioning format

deps yes Array of dependency entries. The only mandatory plug-in
dependency is org.dita.base, which defines the supported
DITA-OT platform.

url yes Absolute URL to plug-in distribution file

cksum no SHA-256 hash of the plug-in distribution file

description no Description of the plug-in

keywords no Array of keywords

homepage no Plug-in homepage URL

license no License in SPDX format

Tip: To calculate the SHA-256 checksum for the cksum key, use shasum -a 256
<plugin-file> on macOS or Linux. With Windows PowerShell, use Get-
FileHash <plugin-file> | Format-List.

Table 2: Structure for dependency entries

Key Mandatory Description

name yes Plug-in name

req yes Required plug-in version in semantic versioning format that
may contain ranges.

Note: Version numbers in the vers and req keys use the three-digit format specified by
semantic versioning. An initial development release of a plug-in might start at version 0.1.0,
and an initial production release at 1.0.0. If your plug-in requires DITA-OT 3.1 or later, set
the req key to >=3.1.0. Using the greater-than sign allows your plug-in to work with
compatible maintenance releases, such as 3.1.3. If the requirement is set to =3.1.0, the
registry will only offer it for installation on that exact version.

Sample plug-in entry file

142

https://www.dita-ot.org/DCO
https://www.dita-ot.org/DCO
https://semver.org
https://spdx.org/licenses/
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/get-filehash?view=powershell-6
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/get-filehash?view=powershell-6
https://semver.org
https://docs.npmjs.com/misc/semver#ranges
https://semver.org

Adding plug-ins via the registry

The example below shows an entry for the DocBook plug-in. The complete file is available in
the registry as org.dita.docbook.json.

[
 {
 "name": "org.dita.docbook",
 "description": "Convert DITA to DocBook.",
 "keywords": ["DocBook"],
 "homepage": "https://github.com/dita-ot/org.dita.docbook/",
 "vers": "2.3.0",
 "license": "Apache-2.0",
 "deps": [
 {
 "name": "org.dita.base",
 "req": ">=2.3.0"
 }
],
 "url": "https://github.com/dita-ot/org.dita.docbook/archive/2.3.zip",
 "cksum": "eaf06b0dca8d942bd4152615e39ee8cfb73a624b96d70e10ab269ed6f8a13e21"
 }
]

Maintaining multiple plug-in versions

When you have multiple versions of a plug-in, include an entry for each version, separated by a
comma:

[
 {
 "name": "org.example.myplugin",
 [...]
 "vers": "1.0.1",
 [...]
 },
 {
 "name": "org.example.myplugin",
 [...]
 "vers": "2.1.0",
 [...]
 }
]

Tip: To publish a new version of your plug-in to the registry, add a new entry to the array in
the existing plug-in entry file rather than overwriting an existing entry. This allows users to
install the previous version of the plug-in if they are using an older version of DITA-OT.

Adding custom registries

In addition to the main plug-in registry at dita-ot.org/plugins, you can create a registry of your
own to store the custom plug-ins for your company or organization.

A registry is just a directory that contains JSON files like the one above; each JSON file
represents one entry in the registry. To add a custom registry location, edit the config/
configuration.properties file in the DITA-OT installation directory and add the URL
for your custom registry directory to the registry key value, separating each entry with a
space.

Tip: Custom registry entries are a simple way to test your own plug-in entry file before
submitting to a common registry.

143

https://github.com/dita-ot/registry/blob/master/org.dita.docbook.json
https://www.dita-ot.org/plugins

Extending DITA-OT with plug-ins

Testing with a custom registry

To test your plug-in entry with a custom registry:

1. Fork the plug-in registry, which creates a new repository under your GitHub username — for
example, https://github.com/USERNAME/registry.git.

2. Create a new branch for your plug-in entry, and add the JSON file to the branch — for
example, create org.example.newPlugin.json in the branch addPlugin.

3. As long as your repository is accessible, that branch now represents a working “custom
registry” that can be added to the config/configuration.properties file. Edit
the registry key and add the raw GitHub URL for the branch that contains the JSON file.
With the example username and branch name above, you can add your registry with:

registry=https://raw.githubusercontent.com/USERNAME/registry/addPlugin/ http://
plugins.dita-ot.org/

4. You can now test the plug-in installation with:

dita --install=org.example.newPlugin

5. Once you’ve confirmed that the entry works, you can submit a pull request to have your entry
added to the common registry.

144

Creating custom plug-ins

Chapter 21 Creating custom plug-ins

In addition to adding plug-ins from the plug-in registry at dita-ot.org/plugins, you can
create custom DITA-OT plug-ins of your own to modify the default output, add new
output formats, support new languages, or implement DITA topic specializations.

A plug-in consists of a directory, typically stored within the plugins/ subdirectory of the
DITA-OT installation. Every plug-in is controlled by a file named plugin.xml, which is
located in the root directory of the plug-in.

Plug-in benefits..145
Plug-in descriptor file..146
Coding conventions... 151
Plug-in dependencies...155
Plug-in use cases... 157
Custom HTML plug-ins..175
Custom PDF plug-ins..183
Globalizing DITA content...192
Migrating customizations.. 199

Plug-in benefits
Plug-ins allow you to extend the toolkit in a way that is consistent, easy-to-share, and
possible to preserve through toolkit upgrades.

The DITA-OT plug-in mechanism provides the following benefits:

• Plug-ins can easily be shared with other users, teams, or companies. Typically, all users
need to do is to unzip and run a single installation command. With many builds, even that
installation step is automatic.

• Plug-ins permit overrides or customizations to grow from simple to complex over time, with
no increased complexity to the extension mechanism.

• Plug-ins can be moved from version to version of DITA-OT by reinstalling or copying the
directory from one installation to another. There is no need to re-integrate code based on
updates to DITA-OT core processing.

• Plug-ins can build upon each other. If you like a plug-in, simply install that plug-in, and then
create your own plug-in that builds on top of it. The two plug-ins can then be distributed to
your team as a unit, or you can share your own extensions with the original provider.

145

https://www.dita-ot.org/plugins

Extending DITA-OT with plug-ins

Plug-in descriptor file
The plug-in descriptor file (plugin.xml) controls all aspects of a plug-in, making each
extension visible to the rest of the toolkit. The file uses pre-defined extension points to
locate changes, and then integrates those changes into the core DITA-OT code.

Validating plug-ins

DITA-OT includes a RELAX NG schema file that can be used to validate the plugin.xml files
that define the capabilities of each plug-in.

To ensure the syntax of your custom plug-in is correct, include an <?xml-model?> processing
instruction at the beginning of the plugin.xml file, immediately after the XML prolog:

<?xml-model href="https://www.dita-ot.org/rng/plugin.rnc"
type="application/relax-ng-compact-syntax"?>

If your authoring environment does not apply this schema automatically, point your editor to
dita-ot-dir/resources/plugin.rnc to associate the schema with your plug-in file.

Plug-in identifiers

Every DITA-OT plug-in must have a unique identifier composed of one or more dot-delimited
tokens, for example, com.example.rss. This identifier is used to identify the plug-in to the
toolkit for installation, processing, and when determining plug-in dependencies.

Note: The default DITA-OT plug-ins use a reverse domain naming convention, as in
org.dita.html5; this is strongly recommended to avoid plug-in naming conflicts.

Each token can include only the following characters:

• Lower-case letters (a-z)

• Upper-case letters (A-Z)

• Numerals (0-9)

• Underscores (_)

• Hyphens (-)

<plugin>

The root element of the plugin.xml file is <plugin>, which has a required @id attribute set
to the unique plug-in identifier.

<plugin id="com.example.html5-javascript">

Figure 25: Sample <plugin> element

Plug-in elements

The <plugin> element can contain the following child elements:

146

Creating custom plug-ins

<extension-point>

An optional element that defines a new extension point that can be used by other
DITA-OT plug-ins.

The following attributes are supported:

Attribute Description Required?

id Extension point identifier Yes

name Extension point description No

Like plug-in identifiers, extension point identifiers are composed of one or more dot-
delimited tokens.

Note: Extension point identifiers should begin with the identifier of the defining
plug-in and append one or more tokens, for example, org.dita.example.pre.

<extension-point id="dita.xsl.html5" name="HTML5 XSLT import"/>

Figure 26: Sample <extension-point> element

<feature>

An optional element that supplies values to a DITA-OT extension point.

The following attributes are supported:

Attribute Description Required?

extension Identifier of the DITA-OT
extension point

Yes

value Comma separated string
value of the extension

Either the @value or
@file attribute must be
specified

file Name and path of a file
containing data for the
extension point.

Depending on the
extension point, this might
be specified as an absolute
path, a path relative to the
plugin.xml file, or a
path relative to the DITA-
OT root.

Either the @value or
@file attribute must be
specified

desc Feature description No

147

Extending DITA-OT with plug-ins

Attribute Description Required?

type Type of the @value
attribute

No

If more than one <feature> element supplies values to the same extension point, the
values are additive. For example, the following are equivalent:

<feature extension="org.dita.example.extension-point" value="a,b,c"/>

<feature extension="org.dita.example.extension-point" value="a"/>
<feature extension="org.dita.example.extension-point" value="b"/>
<feature extension="org.dita.example.extension-point" value="c"/>

Figure 27: Sample <feature> elements

<metadata>

An optional element that defines metadata.

The following attributes are supported:

Attribute Description Required?

type Metadata name Yes

value Metadata value Yes

<metadata type="foo" value="bar"/>

Figure 28: Sample <metadata> element

<require>

An optional element that defines plug-in dependencies.

The following attributes are supported:

Attribute Description Required?

plugin The identifier of the
required plug-in.

To specify alternative
requirements, separate
plug-in identifiers with a
vertical bar.

Yes

importance Identifies whether the
plug-in is required
(default) or optional.
DITA-OT provides a

No

148

Creating custom plug-ins

Attribute Description Required?

warning if a required plug-
in is not available.

<require plugin="org.dita.html5"/>

Figure 29: Sample <require> element

<template>

An optional element that defines files that should be treated as templates.

Template files can be used to integrate DITA-OT extensions. Templates typically
extend the default transformation-type-specific build files via <dita:extension>
elements. When the plug-in installation process runs, template files are used to recreate
build files, and the specified extension points are replaced with references to the
appropriate plug-ins.

The following attributes are supported:

Attribute Description Required?

file Name and path to the
template file, relative to the
plugin.xml file

Yes

<template file="build_dita2html5_template.xml"/>

Figure 30: Sample <template> element

<transtype>

An optional element that defines a new output format (transformation type).

The following attributes are supported:

Attribute Description Required?

name Transformation name Yes

desc Transformation type
description

No

abstract When true, sets the
transformation type as
“abstract”, meaning it can
be extended by other plug-
ins, but cannot be used
directly.

For example, the
org.dita.base plug-in
defines an abstract “base”

No

149

Extending DITA-OT with plug-ins

Attribute Description Required?

transformation type that is
extended by other DITA-
OT plug-ins.

extends Specifies the name of the
transformation type being
extended

No

<transtype name="base" abstract="true" desc="Common">
 [...]
 <param name="link-crawl"
 desc="Specifies whether to crawl only topic links found in maps, or
 all discovered topic links."
 type="enum">
 <val>map</val>
 <val default="true">topic</val>
 </param>
 [...]
</transtype>

Figure 31: Sample <transtype> element

The <transtype> element may define additional parameters for the transformation
type using the following child elements.

<param>

An optional element that specifies a parameter for the transformation type.

The following parameter attributes are supported:

Attribute Description Required?

name Parameter name Yes

desc Parameter description No

type Parameter type (enum,
file, string)

Yes

deprecated When true, identifies this
parameter as deprecated

No

required When true, identifies this
parameter as required

No

<val>

A child of <param> (when @type=enum) that specifies an enumeration value.

The following attributes are supported:

Attribute Description Required?

default When true, sets the
enumeration value as the

Only for the default
<val>

150

Creating custom plug-ins

Attribute Description Required?

default value of the parent
<param>

Any extension that is not recognized by DITA-OT is ignored. Since DITA-OT version 1.5.3, you
can combine multiple extension definitions within a single plugin.xml file; in older versions,
only the last extension definition was used.

Example plugin.xml file

The following is a sample of a plugin.xml file. This file adds support for a new set of
specialized DTDs, and includes an override for the XHTML output processor.

This plugin.xml file would go into a directory such as DITA-OT/plugins/music/ and
referenced supporting files would also exist in that directory. A more extensive sample using
these values is available in the actual music plug-in, available on SourceForge.

1 <plugin·id="org.metadita.specialization.music">
2 ··<feature·extension="dita.specialization.catalog.relative"
3 ···········file="catalog-dita.xml"/>
4 ··<feature·extension="dita.xsl.xhtml"·file="xsl/music2xhtml.xsl"/>
5 </plugin>

Plug-in coding conventions
To ensure custom plug-ins work well with the core toolkit code and remain compatible
with future releases, the DITA Open Toolkit project recommends that plug-ins use
modern development practices and common coding patterns.

Best practices

Adhering to certain development practices will properly isolate your code from that of DITA
Open Toolkit. This will make it easier to you to upgrade to new versions of DITA-OT when they
are released.

• Use a properly-constructed DITA-OT plug-in.

• Use a version control system to store your code.

• Store the source code of your plug-ins outside of the DITA-OT installation directory, and add
the repository location to the list of plug-in directories defined in the plugindirs entry of
the configuration.properties file.

• Never modify any of the core DITA-OT code.

Tip: You may want to set the permissions on default plug-in directories such as
org.dita.pdf2 to “read-only” to ensure that you do not accidentally modify the files
within as you develop your customized plug-in.

• Avoid copying entire DITA-OT files into your customization plug-in. When you only copy
the attribute sets and templates that you need to override, there is less risk of impact from
new features or fixes in the base code, making your code more stable and easier to upgrade
between releases.

151

https://sourceforge.net/projects/dita-ot/files/Plug-in_%20Music/

Extending DITA-OT with plug-ins

• If you only need to change a few attribute sets and templates, you may prefer to store your
overrides in custom.xsl files, or a simple folder hierarchy within your custom plug-in.

• In cases that require substantial customizations, you may prefer to organize the files in a folder
structure that mimics the hierarchy of the default plug-in you are customizing. This facilitates
comparisons with the default settings in the base plug-in and makes it easier to migrate your
changes to new toolkit versions. See PDF plug-in structure on page 184 for information on
the files in the base PDF plug-in.

• Upgrade your customization plug-in to new versions of DITA-OT regularly. Do not wait
through several major releases before upgrading.

Use a custom namespace

For XSLT customizations, use a custom namespace for any modified template modes, template
names, attribute sets, functions, and variables. This helps to clarify which portions of the code are
specific to your customizations, and serves to isolate your changes in the event that items with the
same name are added to the base plug-ins in the future.

For example, instead of creating a template named searchbar, use something like
corp:searchbar instead. This ensures that if future versions of DITA-OT add a
searchbar template, your custom version will be unaffected.

Instead of:

<xsl:template name="searchbar"/>

use:

<xsl:template name="corp:searchbar"/>

Upgrade stylesheets to XSLT 2.0

The Saxon project has announced plans to remove XSLT 1.0 support from the Saxon-HE library
that ships with DITA-OT:

…we’re dropping XSLT 1.0 backwards compatibility mode from Saxon-HE, and hope
to eliminate it entirely in due course.

https://www.xml.com/news/release-saxon-98/

DITA-OT 3.0 and 3.0.1 included Saxon-HE 9.8.0.5, which rejects XSLT stylesheets that
specify version="1.0". Plug-ins with XSLT templates specifying version 1.0 will fail with
the message “XSLT 1.0 compatibility mode is not available in this
configuration.”

To resolve this issue, change any occurrences of <xsl:stylesheet version="1.0"> in
custom plug-in stylesheets to at least <xsl:stylesheet version="2.0">.

Tip: DITA-OT 3.0.2 includes Saxon-HE 9.8.0.7, which restores XSLT 1.0 backwards-
compatibility mode, but the DITA Open Toolkit project recommends upgrading all stylesheets
to XSLT 2.0 to ensure plug-ins remain compatible with future versions of DITA-OT and
Saxon-HE.

152

https://www.xml.com/news/release-saxon-98/

Creating custom plug-ins

Use custom <pipeline> elements

In Ant scripts, use the XSLT module from DITA-OT instead of Ant’s built-in <xslt> or
<style> tasks.

The XSLT module allows access to DITA-OT features like using the job configuration to select
files in the temporary folder based on file metadata and custom XSLT extension functions.

Important: Future versions of DITA-OT may switch to a new XML resolver or in-memory
storage features that are not supported by Ant’s XSLT task. To ensure compatibility with
future releases, plug-ins should replace these constructs with custom <pipeline> elements.

Instead of:

1 <xslt·style="${dita.plugin.example.dir}/custom.xsl"
2 ······basedir="${dita.temp.dir}"
3 ······destdir="${dita.output.dir}"
4 ······includesfile="${dita.temp.dir}/${fullditatopicfile}"/>

use:

1 <pipeline>
2 ··<xslt·style="${dita.plugin.example.dir}/custom.xsl"
3 ········destdir="${dita.output.dir}">
4 ····<ditafileset·format="dita"·/>
5 ··</xslt>
6 </pipeline>

Use the plug-in directory property

In Ant scripts, always refer to files in other plug-ins using the dita.plugin.plugin-
id.dir property.

Instead of:

<property name="base" location="../example/custom.xsl"/>

use:

<property name="base" location="${dita.plugin.example.dir}/custom.xsl"/>

This fixes cases where plug-ins are installed to custom plug-in directories or the plug-in folder
name doesn’t match the plug-in ID.

Tip: For details, see Referencing files from other plug-ins on page 156.

Use the plugin URI scheme

In XSLT, use the plugin URI scheme in <xsl:import> and <xsl:include> to reference
files in other plug-ins.

153

Extending DITA-OT with plug-ins

Instead of:

<xsl:import href="../../org.dita.base/xsl/common/output-message.xsl"/>

use:

<xsl:import href="plugin:org.dita.base:xsl/common/output-message.xsl"/>

As with the plug-in directory property in Ant, this allows plug-ins to resolve to the correct
directory even when a plug-in moves to a new location. The plug-in is referenced using the
syntax plugin:plugin-id:path/within/plugin/file.xsl.

Tip: For details, see Referencing files from other plug-ins on page 156.

Use <ditafileset> to select files

In Ant scripts, use <ditafileset> to select resources in the temporary directory.

For example, to select all images referenced by input DITA files, instead of:

1 <copy·todir="${copy-image.todir}">
2 ··<fileset·dir="${user.input.dir}">
3 ····<includes·name="*.jpg"/>
4 ····<includes·name="*.jpeg"/>
5 ····<includes·name="*.png"/>
6 ····<includes·name="*.gif"/>
7 ····<includes·name="*.svg"/>
8 ··</fileset>
9 </copy>

use:

1 <copy·todir="${copy-image.todir}">
2 ··<ditafileset·format="image"·/>
3 </copy>

The <ditafileset> resource collection can be used to select different types of files.

Table 3: Usage examples of <ditafileset>

Example Description

<ditafileset format="dita"/> Selects all DITA topics in the temporary directory.

<ditafileset format="ditamap"/> Selects all DITA maps in the temporary directory.

<ditafileset format="image"/> Selects images of all known types in the temporary
directory.

Match elements with their @class attribute

Use @class attributes to match elements in XPATH expressions instead of element names.

For example, instead of:

<xsl:template match="p"/>

154

Creating custom plug-ins

use:

<xsl:template match="*[contains(@class,' topic/p ')]"/>

Specialization-aware processing uses these classes to distinguish the general class of elements to
which the current element belongs.

Tip: Matching classes instead of elements ensures that the expression also applies to any
specialized elements as well as to their more general ancestors. This means you can define new
markup without necessarily requiring new processing rules.

Validating plug-ins

DITA-OT includes a RELAX NG schema file that can be used to validate the plugin.xml files
that define the capabilities of each plug-in.

To ensure the syntax of your custom plug-in is correct, include an <?xml-model?> processing
instruction at the beginning of the plugin.xml file, immediately after the XML prolog:

<?xml-model href="https://www.dita-ot.org/rng/plugin.rnc"
type="application/relax-ng-compact-syntax"?>

If your authoring environment does not apply this schema automatically, point your editor to
dita-ot-dir/resources/plugin.rnc to associate the schema with your plug-in file.

Plug-in dependencies
A DITA-OT plug-in can be dependent on other plug-ins. Prerequisite plug-ins are
installed first, which ensures that DITA-OT handles XSLT overrides correctly.

The <require> element in the plugin.xml file specifies whether the plug-in has
dependencies. Use <require> elements to specify prerequisite plug-ins, in order from most
general to most specific.

If a prerequisite plug-in is missing, DITA-OT prints a warning during installation. To
suppress the warning but keep the installation order if both plug-ins are present, add
importance="optional" to the <require> element.

If a plug-in can depend on any one of several optional plug-ins, separate the plug-in IDs with a
vertical bar. This is most useful when combined with importance="optional".

Example: Plug-in with a prerequisite plug-in

The following plug-in will only be installed if the plug-in with the ID
com.example.primary is available. If that plug-in is not available, a warning is generated
and the installation operation fails.

1 <plugin·id="com.example.builds-on-primary">
2 ··<!--·...·Extensions·here·-->
3 ··<require·plugin="com.example.primary"/>
4 </plugin>

155

Extending DITA-OT with plug-ins

Example: Plug-in that has optional plug-ins

The following plug-in will only be installed if either the plug-in with the ID pluginA or the
plug-in with the ID pluginB is available. If neither of those plug-ins are installed, a warning is
generated but the installation operation is completed.

1 <plugin·id="pluginC">
2 ··<!--·...extensions·here·-->
3 ··<require·plugin="pluginA|pluginB"·importance="optional"/>
4 </plugin>

Referencing files from other plug-ins

Starting with DITA-OT 1.5.4, you can use the plugin:plugin-id URI extension
and the ${dita.plugin.plugin-id.dir} Ant variable to reference the base path
of another installed DITA-OT plug-in.

Sometimes you need to reference content in another DITA-OT plug-in. However, the path to an
installed plug-in is not guaranteed to be the same between different installed instances of DITA-
OT. The plugin:plugin-id URI extension and ${dita.plugin.plugin-id.dir}
Ant variable are provided so your build and XSLT files always use the correct path to the plug-in.

Within a single plug-in, you can safely use relative path references, for example, xsl/my.xsl
without specifying the path to the plug-in itself.

Procedure

• Use ${dita.plugin.plugin-id.dir} in Ant build files.

Use the Ant variable ${dita.plugin.plugin-id.dir} anywhere in your build file or
template to point to the base path of an installed DITA-OT plug-in.

The following example copies CSS files from the HTML5 plug-in:

1 <copy·todir="${dita.temp.dir}/css">
2 ··<fileset·dir="${dita.plugin.org.dita.html5.dir}/css"·
3 ···········includes="*.css"/>
4 </copy>

• Use plugin:plugin-id in XSLT files.

Use the URI extension plugin:plugin-id at the beginning of a file reference—usually in
<xsl:import>—to point to the base path of an installed DITA-OT plug-in.

The following example imports the base output-message.xsl processing:

<xsl:import href="plugin:org.dita.base:xsl/common/output-message.xsl"/>

156

Creating custom plug-ins

To use the URI extension, your plug-in must reference the DITA-OT catalog file. In your Ant
build file, add an <xmlcatalog> element referencing the DITA-OT catalog file as a child
of the <xslt> element.

1 <xslt·style="xsl/my.xsl"
2 ······in="${dita.temp.dir}/input.file"·
3 ······out="${dita.temp.dir}/output.file">
4 ··<xmlcatalog·refid="dita.catalog"/>
5 </xslt>

For both of these methods, make sure you use the plug-in ID (defined in the plugin.xml file)
rather than the folder name of the plug-in. In many cases, the folder name is not the same as the
plug-in ID.

Plug-in use cases
Plug-ins allow you to extend the functionality of DITA-OT. This might entail adding
support for specialized document types, integrating processing overrides, or defining new
output transformations.

Setting parameters with plug-ins

To ensure that output is always generated with the same settings, you can create a plug-in
to define a new output format that automatically sets certain DITA-OT parameters.

You might want to build a transformation type that ensures that certain DITA-OT parameters are
used. For example, consider the following scenario.

Draft PDFs

You want to ensure that PDFs generated for internal review have the following characteristics:

• Use company style sheets

• Make draft comments visible to the reviewers, as they contain queries from the information
developers

• Print the file names of the graphics underneath figures, so that graphic artists can more quickly
respond to requested changes

To accomplish this, you can create a new plug-in. In the Ant script that defines the transformation
type, specify the DITA-OT parameters. For example, to render draft comments and art labels, add
<property> elements to specify the DITA-OT parameters:

 1 <?xml·version='1.0'·encoding='UTF-8'?>
 2 <project·name="com.example.draft.pdf">
 3 ··<target·name="dita2draft.pdf.init">
 4 ····<property·name="customization.dir"
 5 ··············location="${dita.plugin.com.example.draft.pdf.dir}/cfg"/>
 6 ····<property·name="args.draft"·value="yes"/>
 7 ····<property·name="args.artlbl"·value="yes"/>
 8 ··</target>
 9 ··<target·name="dita2draft.pdf"
10 ··········depends="dita2draft.pdf.init,·dita2production.pdf,·dita2pdf2"/>
11 </project>

157

Extending DITA-OT with plug-ins

Adding a new target to the Ant build process

As of DITA-OT 3.0, the ant.import extension point can be used to make new targets
available to the Ant processing pipeline. This can be done as part of creating a new
transformation, extending pre-processing, or simply to make new Ant targets available to
other plug-ins.

Procedure

1. Create an Ant project file that contains the new target(s).

2. Create the plugin.xml file:

1 <plugin·id="plugin-id">
2 ··<feature·extension="ant.import"·file="build-file"/>
3 </plugin>

where:

• plugin-id is the plug-in identifier, for example, com.example.ant.

• build-file is the Ant project file that contains the new build target(s).

3. Use the dita install subcommand to install the plug-in.

Note: For more information, see Chapter 18 Installing plug-ins on page 137.

Results

The targets from the project (build-file) are copied into the build.xml file, using the
correct path. This makes the new Ant targets available to other processes.

Tip: Earlier versions of DITA-OT use the dita.conductor.target.relative to
call a wrapper file with a dummy task that imports the Ant project file. This approach is still
supported for backwards compatibility, but the simpler ant.import approach described
above should be used for all new customizations.

Adding an Ant target to the pre-processing pipeline

You can add an Ant target to the pre-processing pipeline. This enables you to insert
additional processing before or after the pre-processing chain or a specific step in the pre-
processing operation.

About this task

You can use the depend.preprocess.pre and depend.preprocess.post extension
points to run a target before or after the entire pre-processing operation. In addition, there are
extension points that enable you to run an Ant target before specific pre-processing steps.

158

Creating custom plug-ins

Tip: For maximum compatibility with future versions of DITA-OT, most plug-ins should use
the extension points that run before or after pre-processing.

Procedure

1. Define and integrate the new Ant target.

2. Create the following plugin.xml file:

1 <plugin·id="plugin-id">
2 ··<feature·extension="extension-point"·value="Ant-target"/>
3 </plugin>

where

• plugin-id is the plug-in identifier.

• extension-point is a pre-processing extension point.

• Ant-target is the name of the Ant target.

3. Use the dita install subcommand to install the plug-in.

Note: For more information, see Chapter 18 Installing plug-ins on page 137.

Results

The new target is added to the Ant dependency list. The new target is now always run in
conjunction with the specified step in the pre-processing pipeline.

Example

The following plugin.xml file specifies that the myAntTargetBeforeChunk target is
always run before the chunk step in the pre-processing stage.

1 <plugin·id="com.example.extendchunk">
2 ··<feature·extension="depend.preprocess.chunk.pre"·
3 ···········value="myAntTargetBeforeChunk"/>
4 </plugin>

It assumes that the myAntTargetBeforeChunk target has already been defined and
integrated.

CAUTION: The internal order of pre-processing steps is subject to change between versions
of DITA-OT. New versions may remove, reorder, combine, or add steps to the process, so the
extension points within the pre-processing stage should only be used if absolutely necessary.

159

Extending DITA-OT with plug-ins

Adding a new transformation type

Plug-ins can add an entirely new transformation type. The new transformation type can
be very simple, such as an HTML build that creates an additional control file; it also can
be very complex, adding any number of new processing steps.

About this task

You can use the <transtype> element to define a new transformation type with any new
custom parameters that are supported.

When a transformation type is defined, the build expects Ant code to be integrated to define
the transformation process. The Ant code must define a target based on the name of the
transformation type; if the transformation type is "new-transform", the Ant code must define a
target named dita2new-transform.

Procedure

1. Create an Ant project file for the new transformation. This project file must define a target
named "dita2new-transtype," where new-transtype is the name of the new
transformation type.

2. Create a plugin.xml with the following content:

1 <plugin·id="plugin-id">
2 ··<transtype·name="new-transtype"/>
3 ··<feature·extension="dita.transtype.print"·value="new-transtype"/>
4 ··<feature·extension="ant.import"·file="ant-file"/>
5 </plugin>

where:

• plugin-id is the plug-in identifier, for example, com.dita-ot.pdf.

• new-transtype is the name of the new transformation, for example, dita-ot-pdf.

• ant-file is the name of the Ant file, for example, build-dita-ot-pdf.xml.

Exclude the content that is highlighted in bold if the transformation is not intended for print.

3. Use the dita install subcommand to install the plug-in.

Note: For more information, see Chapter 18 Installing plug-ins on page 137.

Results

You now can use the new transformation.

160

Creating custom plug-ins

Examples

The following plugin.xml file defines a new transformation type named "print-pdf"; it also
defines the transformation type to be a print type. The build will look for a dita2print-pdf
target.

1 <?xml·version="1.0"·encoding="UTF-8"?>
2 <?xml-model·href="https://www.dita-ot.org/rng/plugin.rnc"·type="application/relax-ng-
compact-syntax"?>
3

4 <plugin·id="com.example.print-pdf">
5 ··<require·plugin="org.dita.pdf2"/>
6 ··<transtype·name="print-pdf"·extends="pdf"·desc="PDF·on·A4·paper"/>
7 ··<feature·extension="dita.transtype.print"·value="print-pdf"/>
8 ··<feature·extension="ant.import"·file="integrator.xml"/>
9 </plugin>

Tip: For a complete sample plug-in with all required code, see Example: Creating a simple
PDF plug-in on page 188.

Figure 32: Creating a new print transformation

If your custom transformation type supports custom parameters, they can be defined in nested
<param> elements within the <transtype> element.

While the org.dita.html5 plug-in was separated from common-html in version 2.4, the
following example shows how earlier versions of that plug-in used the <transtype> element
to extend the common HTML transformation with a new html5 transformation type and define
a new nav-toc parameter with three possible values:

1 <transtype·name="html5"·extends="common-html"·desc="HTML5">
2 ··<param·name="nav-toc"·type="enum"·
3 ·········desc="Specifies·whether·to·generate·navigation·in·topic·pages.">
4 ····<val·default="true"·desc="No·TOC">none</val>
5 ····<val·desc="Partial·TOC·that·shows·the·current·topic">partial</val>
6 ····<val·desc="Full·TOC">full</val>
7 ··</param>
8 </transtype>

Figure 33: Defining new parameters

Processing topics with XSLT in preprocess

You can add an Ant target to the end of the pre-processing pipeline that transforms
all topics. This is useful if you want to modify topics before transtype-specific

161

Extending DITA-OT with plug-ins

processing, for example to modularize the code or reuse the same processing in multiple
transformation types.

Procedure

1. Create a plug-in descriptor file plugin.xml that imports a new Ant buildfile build.xml
and adds an Ant target after pre-processing.

1 <?xml·version="1.0"·encoding="utf-8"?>
2 <?xml-model·href="https://www.dita-ot.org/rng/plugin.rnc"·type="application/relax-
ng-compact-syntax"?>
3 <plugin·id="plugin-id">
4 ··<feature·extension="ant.import"·file="build.xml"/>
5 ··<feature·extension="depend.preprocess.post"·value="uniform-decimals"/>
6 </plugin>

2. Create an Ant buildfile build.xml with a target to process all DITA topics in the temporary
directory.

 1 <?xml·version="1.0"·encoding="utf-8"?>
 2 <project>
 3 ··<target·name="uniform-decimals">
 4 ····<pipeline·taskname="xslt">
 5 ······<xslt·basedir="${dita.temp.dir}"
 6 ············style="${dita.plugin.plugin-id.dir}/filter.xsl">
 7 ········<ditafileset·format="dita"·processingRole="normal"/>
 8 ······</xslt>
 9 ····</pipeline>
10 ··</target>
11 </project>

3. Create an XSLT stylesheet filter.xsl to filter topic content.

 1 <?xml·version="1.0"·encoding="utf-8"?>
 2 <xsl:stylesheet·version="2.0"·xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 3 ··xmlns:xs="http://www.w3.org/2001/XMLSchema"·exclude-result-prefixes="xs">
 4

 5 ··<!--·Format·keywords·with·a·decimal·number·with·at·least·two·decimal·points·-->
 6 ··<xsl:template·match="*[contains(@class,·'·topic/keyword·')]">
 7 ····<xsl:copy>
 8 ······<xsl:apply-templates·select="@*"/>
 9 ······<xsl:variable·name="num"·select="number(.)"·as="xs:double"/>
10 ······<xsl:choose>
11 ········<xsl:when·test="$num·=·$num·and·contains(.,·'.')">
12 ··········<xsl:attribute·name="orig"·select="."/>
13 ··········<xsl:value-of·select="format-number($num,·'0.00#')"/>
14 ········</xsl:when>
15 ········<xsl:otherwise>
16 ··········<xsl:apply-templates·select="node()"/>
17 ········</xsl:otherwise>
18 ······</xsl:choose>
19 ····</xsl:copy>
20 ··</xsl:template>
21

22 ··<!--·Identity·template·-->
23 ··<xsl:template·match="@*·|·node()">
24 ····<xsl:copy>
25 ······<xsl:apply-templates·select="@*·|·node()"/>
26 ····</xsl:copy>
27 ··</xsl:template>
28

29 </xsl:stylesheet>

4. Use the dita install subcommand to install the plug-in.

Note: For more information, see Chapter 18 Installing plug-ins on page 137.

162

Creating custom plug-ins

Results

The filter.xsl stylesheet will transform every DITA topic after pre-processing.

Adding parameters to existing XSLT steps

You can pass parameters from the Ant build to existing XSLT steps in both the pre-
processing pipeline and certain DITA-OT transformations. This can be useful if you
want to make the parameters available as global <xsl:param> values within XSLT
overrides.

Procedure

1. Create an XML file that contains one or more Ant <param> elements nested within a
<dummy> wrapper element.

1 <dummy>
2 ··<!--·Any·Ant·code·allowed·in·xslt·task·is·possible.·Example:·-->
3 ··<param·name="paramNameinXSLT"·expression="${antProperty}"·
4 ·········if="antProperty"/>
5 </dummy>

2. Construct a plugin.xml file that contains the following content:

1 <plugin·id="plugin-id">
2 ··<feature·extension="extension-point"·file="file"/>
3 </plugin>

where:

• plugin-id is the plug-in identifier, for example, com.example.newparam.

• extension-point is the DITA-OT extension point, for example,
dita.conductor.xhtml.param. This indicates the DITA-OT processing step where
the parameters will be available.

• file is the name of the XML file that you created in step 1 on page 163, for example,
insertParameters.xml.

3. Use the dita install subcommand to install the plug-in.

Note: For more information, see Chapter 18 Installing plug-ins on page 137.

Results

The plugin.xml file passes the parameters to the specified transformation or pre-processing
module.

163

Extending DITA-OT with plug-ins

Example

The following plug-in passes the parameters defined in the insertParameters.xml file
as input to the XHTML process. Generally, an additional XSLT override will make use of the
parameters to do something new with the generated content.

1 <plugin·id="com.example.newparam">
2 ··<feature·extension="dita.conductor.xhtml.param"·
3 ···········file="insertParameters.xml"/>
4 </plugin>

Overriding an XSLT-processing step

You can override specific XSLT-processing steps in both the pre-processing pipeline and
certain DITA-OT transformations.

Procedure

1. Develop an XSL file that contains the XSL override.

2. Construct a plugin.xml file that contains the following content:

1 <?xml·version="1.0"·encoding="UTF-8"?>
2 <plugin·id="plugin-id">
3 ··<feature·extension="extension-point"·file="relative-path"/>
4 </plugin>

where:

• plugin-id is the plug-in identifier, for example, com.example.brandheader.

• extension-point is the DITA-OT extension point, for example,
dita.xsl.xhtml. This indicates the DITA-OT processing step that the XSL override
applies to.

• relative-path is the relative path and name of the XSLT file, for example, xsl/
header.xsl.

3. Use the dita install subcommand to install the plug-in.

Note: For more information, see Chapter 18 Installing plug-ins on page 137.

Results

The plug-in installer adds an XSL import statement to the default DITA-OT code, so that the
XSL override becomes part of the normal build.

Example: Overriding XHTML header processing

The following two files represent a complete, simple style plug-in.

The plugin.xml file declares an XSLT file that extends XHTML processing:

1 <?xml·version="1.0"·encoding="UTF-8"?>
2 <plugin·id="com.example.brandheader">
3 ··<feature·extension="dita.xsl.xhtml"·file="xsl/header.xsl"/>
4 </plugin>

164

Creating custom plug-ins

The xsl/header.xsl XSLT file referenced in plugin.xml overrides the default header
processing to add a banner:

1 <?xml·version="1.0"·encoding="UTF-8"?>
2 <xsl:stylesheet·version="1.0"·
3 ················xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
4 ··<xsl:template·name="gen-user-header">
5 ····<div><img·src="http://www.example.com/company_banner.jpg"·
6 ··············alt="Example·Company·Banner"/></div>
7 ··</xsl:template>
8 </xsl:stylesheet>

Adding a Java library to the classpath

You can use the dita.conductor.lib.import extension point to add an
additional Java library to the DITA-OT classpath parameter.

About this task

As of DITA-OT 3.1, the Java class path is managed automatically, meaning you do not (and
should not) use explicit references to Java class paths in your build scripts. In particular, the old
dost.class.path property has been deprecated and should not be used. If you are migrating
older plug-ins that manage their class path directly, you should remove any explicit class path
configuration. If your plug-in was not already using the dita.conductor.lib.import
extension point to integrate its JAR dependencies you must add it.

The effective DITA-OT class path is the combination of the JAR files in the main lib/ directory
and the plug-in-contributed JARs, which are listed in config/env.sh. The env.sh file is
updated automatically when plug-ins are installed or removed.

Procedure

1. If necessary, compile the Java code into a JAR file.

2. Create a plugin.xml file that contains the following code:

1 <plugin·id="plugin-id">
2 ··<feature·extension="dita.conductor.lib.import"·file="file"/>
3 </plugin>

where:

• plugin-id is the plug-in identifier, for example, com.example.addjar.

• file is the name of the JAR file, for example, myJavaLibrary.jar.

3. Use the dita install subcommand to install the plug-in.

Note: For more information, see Chapter 18 Installing plug-ins on page 137.

Results

The Ant or XSLT code now can make use of the Java code.

165

Extending DITA-OT with plug-ins

Example

In the following extended example, the myJavaLibrary.jar file performs a validation step
during processing, and you want it to run immediately before the conref step.

To accomplish this, you will need to use several features:

• The JAR file must be added to the classpath.

• The Ant target must be added to the dependency chain for conref.

• An Ant target must be created that uses this class, and integrated into the code.

The files might look like the following:

 1 <?xml·version="1.0"·encoding="UTF-8"?>
 2 <plugin·id="com.example.samplejava">
 3 ··<!--·Add·the·JAR·file·to·the·DITA-OT·CLASSPATH·-->
 4 ··<feature·extension="dita.conductor.lib.import"·
 5 ···········file="com.example.sampleValidation.jar"/>
 6 ··<!--·Integrate·the·Ant·code·-->
 7 ··<feature·extension="ant.import"·file="calljava-antcode.xml"/>
 8 ··<!--·Define·the·Ant·target·to·call,·and·when·(before·conref)·-->
 9 ··<feature·extension="depend.preprocess.conref.pre"·
10 ···········value="validateWithJava"/>
11 </plugin>

Figure 34: plugin.xml file

1 <?xml·version="1.0"·encoding="UTF-8"?>
2 <project·default="validateWithJava">
3 ··<target·name="validateWithJava">
4 ····<java·classname="com.example.sampleValidation">
5 ······<!--·The·class·was·added·to·the·DITA-OT·classpath·-->
6 ····</java>
7 ··</target>
8 </project>

Figure 35: calljava-antcode.xml file

Adding new diagnostic messages

Use the dita.xsl.messages extension point to add plug-in-specific messages to the
diagnostic messages that are generated by DITA-OT. These messages then can be used
by any XSLT override.

Procedure

1. Create an XML file that contains the messages that you want to add. Be sure to use the
following format for the XML file:

1 <messages>
2 ··<!--·See·resources/messages.xml·for·the·details.·-->
3 ··<message·id="PrefixNumberLetter"·type="error-severity">
4 ····<reason>Message·text</reason>
5 ····<response>How·to·resolve</response>
6 ··</message>
7 </messages>

where:

• Prefix is a sequence of four capital letters.

166

Creating custom plug-ins

Note: By convention, the toolkit messages use DOTX but any sequence can be used by
plug-in developers.

• Number is a three-digit integer.

• Letter is one of the following upper-case letters: I, W, E, F. It should match the value
that is specified for the @type attribute.

Note: As the @id attribute is used as a whole and not decomposed by recent versions
of the toolkit, you could use any sequence as the message identifier. Nevertheless, to
facilitate reuse of the plug-in and make it more readable by other users, we recommend
following these guidelines.

• error-severity specifies the severity of the error. It must be one of the following
values:

Info (I) Informational messages highlight the
progress of transformation and call
attention to conditions of which you should
be aware. For example, draft comments are
enabled and will be rendered in the output.

Warning (W) The toolkit encountered a problem that
should be corrected. Processing will
continue, but the output might not be as
expected.

Error (E) The toolkit encountered a more severe
problem, and the output is affected. For
example, some content is missing or
invalid, or the content is not rendered in the
output

Fatal (F) The toolkit encountered a severe condition,
processing stopped, and no output is
generated.

Note: The FATAL value throws a fatal error message in XSLT and an exception in
Java.

Tip: If the @id attribute of your message is equal to the @id of a default DITA-OT
message, your message will override the default one. An override cannot change the
severity of the overridden message.

2. Create a plugin.xml file that contains the following content:

1 <plugin·id="plugin-id">
2 ··<feature·extension="dita.xsl.messages"·file="file"/>
3 </plugin>

167

Extending DITA-OT with plug-ins

where:

• plugin-id is the plug-in identifier, for example, com.example.newmsg.

• file is the name of the new XML file containing the messages created in step 1 on page
166, for example, myMessages.xml.

3. Use the dita install subcommand to install the plug-in.

Note: For more information, see Chapter 18 Installing plug-ins on page 137.

What to do next

Add the following call in XSLT modules to generate a message when a specific condition occurs:

1 <xsl:call-template·name="output-message">
2 ··<xsl:with-param·name="id">prefixnumberletter</xsl:with-param>
3 ··<xsl:with-param·name="msg">Message·text·and·parameters.</xsl:with-param>
4 </xsl:call-template>

You can also pass custom parameters to the template by using the @msgparams parameter. The
value of @msgparams is a semicolon separated list of strings, where each token consists of a
percent sign prefixed parameter index, equals sign and parameter value.

1 <xsl:call-template·name="output-message">
2 ··<xsl:with-param·name="id">prefixnumberletter</xsl:with-param>
3 ··<xsl:with-param·name="msgparams">%1=MyFirstValue;%2=MySecondValue</xsl:with-param>
4 </xsl:call-template>

Use the ctx parameter if calling from a function.

Creating a new plug-in extension point

If your plug-in needs to define its own extension points in an XML file, add the string
"_template" to the filename before the file suffix. When the plug-in is installed, this
file will be processed like the built-in DITA-OT templates.

Template files are used to integrate most DITA-OT extensions. For example, the
dita2xhtml_template.xsl file contains all of the default rules for converting DITA topics
to XHTML, along with an extension point for plug-in extensions. When the plug-in is installed,
the dita2xhtml.xsl is recreated, and the extension point is replaced with references to all
appropriate plug-ins.

To mark a new file as a template file, use the <template> element.

The template extension namespace has the URI http://dita-ot.sourceforge.net.
It is used to identify elements and attributes that have a special meaning in template processing.
This documentation uses the dita: prefix to refer to elements in the template extension
namespace. However, template files are free to use any prefix, provided that there is a namespace
declaration that binds the prefix to the URI of the template extension namespace.

168

Creating custom plug-ins

<dita:extension> element

The <dita:extension> elements are used to insert generated content during the plug-in
installation process. There are two required attributes:

• The @id attribute defines the extension point ID that provides the argument data.

• The @behavior attribute defines which processing action is used.

Supported values for the @behavior attribute:

org.dita.dost.platform.CheckTranstypeAction

Create Ant condition elements to check if the ${transtype} property value equals
a supported transformation type value.

org.dita.dost.platform.ImportAntLibAction

Create Ant <pathelement> elements for the library import extension point. The
@id attribute is used to define the extension point ID.

org.dita.dost.platform.ImportPluginCatalogAction

Include plug-in metadata catalog content.

org.dita.dost.platform.ImportPluginInfoAction

Create plug-in metadata Ant properties.

org.dita.dost.platform.ImportStringsAction

Include plug-in string file content based on the generated text extension point. The @id
attribute is used to define the extension point ID.

org.dita.dost.platform.ImportXSLAction

Create <xsl:import> elements based on the XSLT import extension point. The
@id attribute is used to define the extension point ID.

org.dita.dost.platform.InsertAction

Include plug-in conductor content based on the Ant import extension point. The @id
attribute is used to define the extension point ID.

org.dita.dost.platform.InsertAntActionRelative

Include plug-in conductor content based on the relative Ant import extension point.
The @id attribute is used to define the extension point ID.

org.dita.dost.platform.InsertCatalogActionRelative

Include plug-in catalog content based on the catalog import extension point. The @id
attribute is used to define the extension point ID.

org.dita.dost.platform.ListTranstypeAction

Create a pipe-delimited list of supported transformation types.

@dita:extension attribute

The @dita:extension attribute is used to process attributes in elements which are not in the
template extension namespace. The value of the attribute is a space-delimited tuple, where the
first item is the name of the attribute to process and the second item is the action ID.

Supported values:

depends org.dita.dost.platform.InsertDependsAction

169

Extending DITA-OT with plug-ins

The Ant target dependency list is processed to replace all target names that start
with an opening brace { character and end with a closing brace }. The value of the
extension point is the ID between the braces.

Example

The following plug-in defines myBuildFile_template.xml as a new template for
extensions, and two new extension points.

1 <plugin·id="com.example.new-extensions">
2 ··<extension-point·id="com.example.new-extensions.pre"
3 ···················name="Custom·target·preprocess"/>
4 ··<extension-point·id="com.example.new-extensions.content"
5 ···················name="Custom·target·content"/>
6 ··<template·file="myBuildFile_template.xml"/>
7 </plugin>

When the plug-in is installed, this will be used to recreate myBuildFile.xml, replacing Ant
file content based on extension point use.

 1 <project·xmlns:dita="http://dita-ot.sourceforge.net">
 2 ··<target·name="dita2custom"
 3 ·····dita:depends="dita2custom.init,
 4 ··················{com.example.new-extensions.pre},
 5 ···················dita2xhtml"
 6 ·····dita:extension="depends·org.dita.dost.platform.InsertDependsAction">
 7 ····<dita:extension·id="com.example.new-extensions.content"
 8 ····················behavior="org.dita.dost.platform.InsertAction"/>
 9 ··</target>
10 </project>

Extending an XML catalog file

You can update either the main DITA-OT XML catalog or the XML catalog that is
used by the PDF plug-in. This enables DITA-OT to support new specializations and
document-type shells.

About this task

You can use the dita.specialization.catalog.relative and
org.dita.pdf2.catalog.relative extension points to update the DITA-OT catalog
files.

Remember: The dita.specialization.catalog extension is deprecated. Use
dita.specialization.catalog.relative instead.

Procedure

1. Using the OASIS catalog format, create an XML catalog file that contains only the new
values that you want to add to a DITA-OT catalog file.

2. Create a plugin.xml file that contains the following content:

1 <plugin·id="plugin-id">
2 ··<feature·extension="extension-point"·file="file"/>
3 </plugin>

170

Creating custom plug-ins

where:

• plugin-id is the plug-in identifier, for example, com.example.catalog.

• extension-point is either dita.specialization.catalog.relative or
org.dita.pdf2.catalog.relative.

• file is the name of the new catalog file, for example, catalog-dita.xml.

3. Save the new XML catalog file to your plug-in. Be sure that the local file references are
relative to the location of the catalog and plug-in.

4. Use the dita install subcommand to install the plug-in.

Note: For more information, see Chapter 18 Installing plug-ins on page 137.

Results

The catalog entries inside of the new catalog file are added to the core DITA-OT catalog file.

Example

This example assumes that catalog-dita.xml contains an OASIS catalog for any
document-type shells inside this plug-in. The catalog entries in catalog-dita.xml are
relative to the catalog itself; when the plug-in is installed, they are added to the core DITA-OT
catalog (with the correct path).

1 <plugin·id="com.example.catalog">
2 ··<feature·extension="dita.specialization.catalog.relative"
3 ···········file="catalog-dita.xml"/>
4 </plugin>

Adjusting file names in map-first pre-processing

To dynamically adjust the names and locations of output files in the map-first pre-
processing routine (preprocess2), you can create a custom plug-in and specify the
code that contains your custom rewrite rules.

For example, set the result.rewrite-rule.xsl parameter to specify a bundled XSLT
stylesheet that contains your custom rewrite rules.

 1 <?xml·version='1.0'·encoding='UTF-8'?>
 2 <project·name="com.example.rewrite.pdf">
 3 ··<target·name="dita2rewrite.pdf.init">
 4 ····<property·name="customization.dir"
 5 ··············location="${dita.plugin.com.example.rewrite.pdf.dir}/cfg"/>
 6 ····<property·name="result.rewrite-
rule.xsl"·
 7 ··············value="${dita.plugin.com.example.rewrite.pdf.dir}/custom-rules.xsl"/>
 8 ··</target>
 9 ··<target·name="dita2rewrite.pdf"
10 ··········depends="dita2rewrite.pdf.init,·dita2production.pdf,·dita2pdf2"/>
11 </project>

171

Extending DITA-OT with plug-ins

Your plug-in would also include a custom-rules.xsl file, which might contain templates
like this to move all image files to an images subdirectory:

1 <xsl:template·match="node()·|·@*">
2 ··<xsl:copy>
3 ····<xsl:apply-templates·select="node()·|·@*"/>
4 ··</xsl:copy>
5 </xsl:template>
6

7 <xsl:template·match="file[@format·=·'image']/@result">
8 ··<xsl:attribute·name="{local-name()}"·select="concat('images/',·.)"/>
9 </xsl:template>

Note: If your rewrite rules are contained in a Java class, you can set the
result.rewrite-rule.class parameter instead, and pass the name of your
Java class in the @value attribute. The custom class should implement the
org.dita.dost.module.RewriteRule interface.

Adding Saxon customizations

Plug-ins can contribute XSLT extension functions and collation URI resolvers. These
customizations are automatically configured to work with Saxon when transformations
are run using the DITA-OT <pipeline> task with custom XSLT.

Plug-ins can provide the following Saxon extensions:

• Extension functions

• Collation URI resolvers

Extensions are declared in plug-in-provided JAR files using the Java ServiceLoader feature that
looks for service-declaring files in JAR files and loads classes. This requires adding one or more
files in the META-INF/services directory in plug-in-provided JAR files.

You can create the file manually or generate it dynamically using <service> elements in Ant
<jar> tasks. See the topics for the different extension types for details.

These extensions use the DITA Open Toolkit Ant <pipeline> element to wrap <xslt>
elements. You can do this in plug-ins as shown in this excerpt from the DITA Community I18N
plugin’s build.xml file:

<target name="org.dita-community.i18n-saxon-extension-test">
 <pipeline message="Test the DITA Community i18n Saxon extension functions"
 taskname="i18n-extension-function-test">
 <xslt
 in="${dita.plugin.org.dita-community.i18n.dir}/test/xsl/data/test-data.xml"
 style="${dita.plugin.org.dita-community.i18n.dir}/test/xsl/test-extension-
functions.xsl"
 out="${basedir}/out/extension-function-test-results.xml"
 >
 </xslt>
 </pipeline>
</target>

Normal XSLT extensions to built-in transformation types will automatically have the extensions
available to them.

172

Creating custom plug-ins

The dynamic Saxon configuration is implemented in the class
org.dita.dost.module.XsltModule, which backs the <pipeline>/<xslt>
element.

Implementing Saxon extension functions

Plug-ins can contribute Saxon extension functions for use in XSLT transformations run
by DITA Open Toolkit.

Starting with Saxon 9.2, the mechanism for implementing extension functions has changed such
that Saxon HE, in particular, can no longer use the older “reflexive” mechanism for finding
Java extension functions using a magic URL. Instead, you implement extension functions and
then register them directly on the Saxon Configuration object. DITA-OT provides a dynamic
mechanism to perform this registration for plug-in-provided extension functions.

To implement extension functions, you must do the following:

1. Add your plug-in’s JAR file in the DITA-OT class path as described in Adding a Java library
to the classpath on page 165.

2. For each function, implement a class that extends
net.sf.saxon.lib.ExtensionFunctionDefinition. This class provides the
namespace name and function name for the function as well as details about its arguments and
so on. See Integrated extension functions in the Saxon documentation.

3. Include a file named net.sf.saxon.lib.ExtensionFunctionDefinition
in the directory META-INF/services in the compiled JAR that your plug-
in provides. Each line of the file must be the name of a class that implements
net.sf.saxon.lib.ExtensionFunctionDefinition:

com.example.saxon.functions.Add
com.example.saxon.functions.Subtract

You can create the file using <service> elements in an Ant <jar> task:

<jar destfile="${basedir}/target/lib/example-saxon.jar">
 [...]
 <service type="net.sf.saxon.lib.ExtensionFunctionDefinition">
 <provider classname="com.example.saxon.functions.Add"/>
 <provider classname="com.example.saxon.functions.Subtract"/>
 </service>
 [...]
</jar>

4. In your XSLT transformations, declare the namespace the functions are bound to:

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:eg="http://example.com/saxon-extensions"
 version="2.0">

You should then be able to use the extension functions as you would any other function:

<xsl:variable name="test" select="eg:add(1, 2)"/>

173

http://www.saxonica.com/html/documentation9.8/extensibility/integratedfunctions

Extending DITA-OT with plug-ins

Implementing custom Saxon collation URI resolvers

Plug-ins can provide custom URI resolvers that provide collators for specific collation
URIs.

To do custom sorting and grouping in XSLT, you identify collators using URIs that Saxon
resolves to collator implementations. You implement the mapping from collation URIs to
collators through custom collation URI resolvers.

For example, the DITA Community I18N plugin provides a custom collator for doing dictionary-
based sorting and grouping of Simplified Chinese.

To allow multiple plug-ins to contribute collation URI resolvers, DITA-OT
defines a superinterface of Saxon’s CollationUriResolver interface,
org.dita.dost.module.saxon.DelegatingCollationUriResolver, that takes a
base resolver.

Implementations of DelegatingCollationUriResolver should delegate to their base
resolver if they do not resolve the URI specified on the resolve request. When multiple plug-ins
provide resolvers it results in a chain of resolvers, ending with the built-in Saxon default resolver.

Note: The order in which plug-ins will be processed during collation URI resolver
configuration is variable, so two plug-ins should not try to resolve the same collation URI. In
that case the first one configured will be used at run time.

A typical delegating collation URI resolver looks like this:

public class DCI18nCollationUriResolver implements DelegatingCollationUriResolver {

 public static final String DITA_COMMUNITY_I18N_ZH_CNAWARE_COLLATOR =
 "http://org.dita-community.i18n.zhCNawareCollator";
 public static final String LANG_URI_PARAM = "lang";

 private CollationURIResolver baseResolver;

 public DCI18nCollationUriResolver() {
 super();
 this.baseResolver = StandardCollationURIResolver.getInstance();
 }

 public net.sf.saxon.lib.StringCollator resolve(String uri, Configuration
 configuration)
 throws XPathException {
 ZhCnAwareCollator collator = resolveToZhCnAwareCollator(uri, null,
 configuration);
 if (null == collator) {
 return baseResolver.resolve(uri, configuration);
 }
 return (StringCollator) collator;
 }

 @Override
 public void setBaseResolver(CollationURIResolver baseResolver) {
 this.baseResolver = baseResolver;
 }

 /* ... Code to evaluate the collation URI and provide the appropriate collator goes
 here */
}

To implement a custom collation URI resolver:

174

Creating custom plug-ins

1. Add your plugin’s JAR file in the DITA-OT class path as described in Adding a Java library
to the classpath on page 165.

2. Implement an instance of
org.dita.dost.module.saxon.DelegatingCollationUriResolver as
described above.

3. Include a file named
org.dita.dost.module.saxon.DelegatingCollationUriResolver
in the directory META-INF/services in the compiled JAR that your plug-
in provides. Each line of the file must be the name of a class that implements
org.dita.dost.module.saxon.DelegatingCollationUriResolver:

org.example.i18n.saxon.MyCollationUriResolver

You can create the services file using <service> elements in an Ant <jar> task:

<jar destfile="${basedir}/target/lib/example-saxon.jar">
 [...]
 <service type="org.dita.dost.module.saxon.DelegatingCollationUriResolver">
 <provider classname="org.example.i18n.saxon.MyCollationUriResolver"/>
 </service>
 [...]
</jar>

4. To use the collator in XSLT style sheets, specify the collation URI on @xsl:sort elements
(or anywhere a collator URI can be specified):

<xsl:apply-templates select="word">
 <xsl:sort collation="http://org.example.i18n.MyCollator"/>
</xsl:apply-templates>

Custom HTML plug-ins
In addition to the basic modifications that can be made with parameter settings and
property files, you can create custom HTML plug-ins that bundle custom fonts,
JavaScript, and stylesheets; modify the HTML markup, or override other aspects of
HTML processing.

Note: These examples are not intended to be used as-is, but illustrate basic techniques you
can use in your own plug-ins. In practise, custom plug-ins often combine several of these
approaches.

Bundling CSS in a custom HTML plug-in

You can create a DITA-OT plug-in that provides a custom stylesheet with the typography
and colors that define your corporate identity. Coworkers can install this plug-in to

175

Extending DITA-OT with plug-ins

ensure consistent HTML output across projects without having to copy the stylesheet to
each project.

About this task

This scenario walks through the process of creating a very simple plug-in
(com.example.html5-custom-css) that creates a new transformation type: html5-
custom-css.

The html5-custom-css transformation includes a custom CSS file and sets four parameters
to integrate the custom stylesheet in the generated HTML5 output. These parameter settings make
the following changes:

• Specify the css subfolder of the plug-in as the source directory for custom CSS with
args.cssroot.

• Specify the name of the custom CSS file with args.css.

The value of this parameter tells DITA-OT to use the custom.css file provided by the
plug-in.

• Ensure that the CSS file is copied to the output directory by setting args.copycss to yes.

• Set the destination path for CSS files in the output folder with args.csspath.

CSS files are copied to the root level of the output folder by default. Setting this parameter
places CSS files in a dedicated css subfolder.

All four parameters are set in the Ant script (build_html5-custom-css.xml).

Procedure

1. In the plugins directory, create a directory named com.example.html5-custom-
css.

2. In the new com.example.html5-custom-css directory, create a plug-in configuration
file (plugin.xml) that declares the new html5-custom-css transformation and its
dependencies.

1 <?xml·version="1.0"·encoding="UTF-8"?>
2 <?xml-model·href="https://www.dita-ot.org/rng/plugin.rnc"·type="application/relax-
ng-compact-syntax"?>
3

4 <plugin·id="com.example.html5-custom-css">
5 ··<require·plugin="org.dita.html5"/>
6 ··<transtype·name="html5-custom-css"·extends="html5"·desc="HTML5·with·custom·CSS"/
>
7 ··<feature·extension="ant.import"·file="build_html5-custom-css.xml"/>
8 </plugin>

Figure 36: Sample plugin.xml file

Note: This plug-in will extend the default HTML5 transformation, so the <require>
element explicitly defines org.dita.html5 as a dependency.

3. In the com.example.html5-custom-css directory, create a subdirectory named css.

176

Creating custom plug-ins

4. In the new css subdirectory, create a file named custom.css with your custom CSS rules.

1 /*·These·custom·styles·extend·or·override·DITA·Open·Toolkit·default·styles.·*/
2

3 body·{
4 ··color:·#f00;
5 }

Figure 37: Sample custom.css file

Tip: When you first create the plug-in, you may want to include a rule in your custom
stylesheet that makes it readily apparent when the custom styles are applied (the example
above will change body text to “red”). Once you have verified that the plug-in works as
intended, replace the placeholder rule with your own custom styles.

5. In the com.example.html5-custom-css root directory, add an Ant script
(build_html5-custom-css.xml) to define the transformation type.

 1 <?xml·version='1.0'·encoding='UTF-8'?>
 2

 3 <project>
 4 ··<target·name="dita2html5-custom-css"
 5 ·······depends="dita2html5-custom-css.init,
 6 ················dita2html5"/>
 7 ··<target·name="dita2html5-custom-css.init">
 8 ····<property·name="args.cssroot"
 9 ··········location="${dita.plugin.com.example.html5-custom-css.dir}/css"/>
10 ····<property·name="args.css"·value="custom.css"/>
11 ····<property·name="args.copycss"·value="yes"/>
12 ····<property·name="args.csspath"·value="css"/>
13 ··</target>
14 </project>

Figure 38: Sample build file: build_html5-custom-css.xml

Results

Tip: The files for this sample plug-in are included in the DITA-OT installation directory under
docsrc/samples/plugins/com.example.html5-custom-css/ and on GitHub.

The plug-in directory has the following layout and files:

com.example.html5-custom-css
build_html5-custom-css.xml
css
custom.css
plugin.xml

What to do next

1. Use the dita install subcommand to install the plug-in.

Note: For more information, see Chapter 18 Installing plug-ins on page 137.

2. Build output with the new transformation type to verify that the plug-in works as intended.

dita --input=my.ditamap --format=html5-custom-css

3. Refine the styles in your custom.css file as necessary.

177

https://github.com/dita-ot/docs/tree/develop/samples/plugins/com.example.html5-custom-css

Extending DITA-OT with plug-ins

Embedding web fonts in HTML output

A custom plug-in can be created to generate HTML output that uses custom fonts for
enhanced typographic features, extended character sets or a unique corporate identity.

About this task

This scenario walks through the process of creating a very simple plug-in
(com.example.html5-webfont) that creates a new transformation type: html5-
webfont.

The html5-webfont transformation includes a custom CSS file and sets five parameters to
integrate font links and a custom stylesheet in the generated HTML5 output. These parameter
settings make the following changes:

• Specify a file that links to the font from the document head with args.hdf.

• Specify the css subfolder of the plug-in as the source directory for custom CSS with
args.cssroot.

• Specify the name of the custom CSS file with args.css.

The value of this parameter tells DITA-OT to use the custom.css file provided by the
plug-in.

• Ensure that the CSS file is copied to the output directory by setting args.copycss to yes.

• Set the destination path for CSS files in the output folder with args.csspath.

CSS files are copied to the root level of the output folder by default. Setting this parameter
places CSS files in a dedicated css subfolder.

All five parameters are set in the Ant script (build_html5-webfont.xml).

Procedure

1. In the plugins directory, create a directory named com.example.html5-webfont.

2. In the new com.example.html5-webfont directory, create a plug-in configuration
file (plugin.xml) that declares the new html5-webfont transformation and its
dependencies.

1 <?xml·version="1.0"·encoding="UTF-8"?>
2 <?xml-model·href="https://www.dita-ot.org/rng/plugin.rnc"·type="application/relax-
ng-compact-syntax"?>
3

4 <plugin·id="com.example.html5-webfont">
5 ··<require·plugin="org.dita.html5"/>
6 ··<transtype·name="html5-
webfont"·extends="html5"·desc="HTML5·with·Noto·Sans·webfont"/>
7 ··<feature·extension="ant.import"·file="build_html5-webfont.xml"/>
8 </plugin>

Figure 39: Sample plugin.xml file

Note: This plug-in will extend the default HTML5 transformation, so the <require>
element explicitly defines org.dita.html5 as a dependency.

3. In the com.example.html5-webfont directory, create a subdirectory named include.

178

Creating custom plug-ins

4. In the new include subdirectory, create a file named webfont.hdf.xml with your
custom font links.

1 <div>
2 ··<link·href="https://fonts.googleapis.com/css?family=Noto+Sans"·rel="stylesheet"/
>
3 </div>

Figure 40: Sample webfont.hdf.xml file

This example uses the Noto Sans font. You can use multiple fonts by creating additional
<link> references in this file. The division wrapper will be discarded when generating
HTML files, and the contents will be inserted into the <head> element of each page.

5. In the com.example.html5-webfont directory, create a subdirectory named css.

6. In the new css subdirectory, create a file named custom.css with the stylesheet rules that
apply the custom font-family to the desired elements.

1 body·{
2 ··font-family:·'Noto·Sans',·sans-serif;
3 }

Figure 41: Sample custom.css file

This example uses Noto Sans for all body content. In practice, you would normally use
different fonts for headings, body content, tables, etc. by creating additional rules in your CSS
file.

7. In the com.example.html5-webfont root directory, add an Ant script
(build_html5-webfont.xml) to define the transformation type.

 1 <?xml·version='1.0'·encoding='UTF-8'?>
 2

 3 <project>
 4 ··<target·name="dita2html5-webfont"
 5 ·······depends="dita2html5-webfont.init,
 6 ················dita2html5"/>
 7 ··<target·name="dita2html5-webfont.init">
 8 ····<property·name="args.hdf"
 9 ··········location="${dita.plugin.com.example.html5-webfont.dir}/include/
webfont.hdf.xml"/>
10 ····<property·name="args.cssroot"
11 ··········location="${dita.plugin.com.example.html5-webfont.dir}/css"/>
12 ····<property·name="args.css"·value="custom.css"/>
13 ····<property·name="args.copycss"·value="yes"/>
14 ····<property·name="args.csspath"·value="css"/>
15 ··</target>
16 </project>

Figure 42: Sample build file: build_html5-webfont.xml

Results

Tip: The files for this sample plug-in are included in the DITA-OT installation directory under
docsrc/samples/plugins/com.example.html5-webfont/ and on GitHub.

179

https://fonts.google.com/specimen/Noto+Sans
https://fonts.google.com/specimen/Noto+Sans
https://github.com/dita-ot/docs/tree/develop/samples/plugins/com.example.html5-webfont

Extending DITA-OT with plug-ins

The plug-in directory has the following layout and files:

com.example.html5-webfont
build_html5-webfont.xml
css
custom.css
include
webfont.hdf.xml
plugin.xml

What to do next

1. Use the dita install subcommand to install the plug-in.

Note: For more information, see Chapter 18 Installing plug-ins on page 137.

2. Build output with the new transformation type to verify that the plug-in works as intended.

dita --input=my.ditamap --format=html5-webfont

3. Refine the styles in your custom.css file to adjust the font usage as necessary.

Inserting JavaScript in generated HTML

JavaScript code can be bundled in a custom plug-in and automatically inserted into the
generated HTML pages to enable web analytics or dynamic content delivery.

About this task

This scenario walks through the process of creating a very simple plug-in
(com.example.html5-javascript) that creates a new transformation type: html5-
javascript.

The html5-javascript transformation includes a custom page footer file with a JavaScript
tracking snippet and sets the args.ftr parameter to integrate the script content in the HTML5
<footer> element of the generated pages.

Note: This example inserts a tracking snippet for Google Analytics, but the basic approach is
the same for other analytics platforms or similar use cases that require custom JavaScript.

Procedure

1. In the plugins directory, create a directory named com.example.html5-
javascript.

180

Creating custom plug-ins

2. In the new com.example.html5-javascript directory, create a plug-in configuration
file (plugin.xml) that declares the new html5-javascript transformation and its
dependencies.

1 <?xml·version="1.0"·encoding="UTF-8"?>
2 <?xml-model·href="https://www.dita-ot.org/rng/plugin.rnc"·type="application/relax-
ng-compact-syntax"?>
3

4 <plugin·id="com.example.html5-javascript">
5 ··<require·plugin="org.dita.html5"/>
6 ··<transtype·name="html5-
javascript"·extends="html5"·desc="HTML5·with·embedded·JavaScript"/>
7 ··<feature·extension="ant.import"·file="build_html5-javascript.xml"/>
8 </plugin>

Figure 43: Sample plugin.xml file

Note: This plug-in will extend the default HTML5 transformation, so the <require>
element explicitly defines org.dita.html5 as a dependency.

3. In the com.example.html5-javascript directory, create a subdirectory named
include.

4. In the new include subdirectory, create a file named javascript.ftr.xml with your
custom JavaScript code.

 1 <div>
 2 <!--·Google·Analytics·-->
 3 <script>
 4 console.log('Adding·Google·Analytics·tracker');
 5

 6 (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){
 7 (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new·Date();a=s.createElement(o),
 8 m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)
 9 })(window,document,'script','https://www.google-analytics.com/
analytics.js','ga');
10

11 ga('create',·'UA-XXXXX-Y',·'auto');
12 ga('send',·'pageview');
13 </script>
14 <!--·End·Google·Analytics·-->
15 </div>

Figure 44: Sample javascript.ftr.xml file

The division wrapper will be discarded when generating HTML files, and the contents will be
inserted into the <footer> element of each page.

The file contents must be well-formed XML. If your JavaScript snippets include attributes
without values (such as the async script attribute), use valid XML syntax to define the
empty attribute:

Instead of:

1 <script>
2 ··<script·id="MathJax-script"·async·src="https://cdn.jsdelivr.net/npm/mathjax@3/
es5/tex-mml-chtml.js"></script>
3 </script>

181

Extending DITA-OT with plug-ins

use:

1 <script>
2 ··<script·id="MathJax-script"·async=""·src="https://cdn.jsdelivr.net/npm/
mathjax@3/es5/tex-mml-chtml.js"></script>
3 </script>

5. In the com.example.html5-javascript root directory, add an Ant script
(build_html5-javascript.xml) to define the transformation type and set the path to
the JavaScript footer file created in the previous step.

 1 <?xml·version='1.0'·encoding='UTF-8'?>
 2

 3 <project>
 4 ··<target·name="dita2html5-javascript"
 5 ·······depends="dita2html5-javascript.init,
 6 ················dita2html5"/>
 7 ··<target·name="dita2html5-javascript.init">
 8 ····<property·name="args.ftr"
 9 ··········location="${dita.plugin.com.example.html5-javascript.dir}/include/
javascript.ftr.xml"/>
10 ··</target>
11 </project>

Figure 45: Sample build file: build_html5-javascript.xml

Note: When defining the path to the footer file from the Ant script, use the plug-
in directory property with the plugin-id as shown in the example above:
${dita.plugin.plugin-id.dir}.

Results

Tip: The files for this sample plug-in are included in the DITA-OT installation directory under
docsrc/samples/plugins/com.example.html5-javascript/ and on GitHub.

The plug-in directory has the following layout and files:

com.example.html5-javascript
build_html5-javascript.xml
include
javascript.ftr.xml
plugin.xml

What to do next

1. Use the dita install subcommand to install the plug-in.

Note: For more information, see Chapter 18 Installing plug-ins on page 137.

2. Build output with the new transformation type to verify that the plug-in works as intended.

dita --input=my.ditamap --format=html5-javascript

3. Open one of the generated HTML topic files in a modern web browser and check the
JavaScript Console. When the page is loaded, Adding Google Analytics tracker
will appear on the console to verify that the sample script is loaded.

182

https://github.com/dita-ot/docs/tree/develop/samples/plugins/com.example.html5-javascript

Creating custom plug-ins

4. Remove the console.log debugging message from the sample JavaScript code, and
replace the 'UA-XXXXX-Y' placeholder string with the tracking ID of the Google Analytics
property you wish to track.

Tip: This example places the JavaScript code in the page footer to ensure that page display is
not delayed while the script is loaded. If your JavaScript code supports pre-loading and your
application targets modern browsers that recognize the async script attribute, you may prefer
to insert the JavaScript snippet in the <head> element of the generated HTML files using the
args.hdf parameter instead.

Custom PDF plug-ins
In most cases, PDF output should be customized by creating custom DITA-OT plug-
ins that build on the default DITA to PDF transformation. PDF plug-ins can customize
covers and page layouts, modify formatting, override the logic of the default PDF plug-
in, and much more.

Types of custom PDF plug-ins

There are two common types of plug-ins: A plug-in that simply sets the DITA-OT
parameters to be used when a PDF is generated, and a plug-in that overrides aspects of
the base DITA-OT PDF transformation. A plug-in can, of course, do both of these things.

Plug-in that only provides DITA-OT parameters

You might want to build a transformation type that uses a transformation as-is; however,
you might want to ensure that certain DITA-OT parameters are used. For an example of this
approach, see Setting parameters with plug-ins on page 157.

Plug-in that overrides the base PDF transformation

Production uses of DITA-OT typically rely on a custom PDF plug-in to render PDFs that are
styled to match corporate or organizational guidelines. Such customization plug-ins often
override the following aspects of DITA-OT default output:

• Generated text strings

• XSL templates

• XSL-FO attribute sets

183

Extending DITA-OT with plug-ins

PDF plug-in structure

In cases that require substantial customizations, it is often useful to organize the files in a
folder structure that mimics the hierarchy of the default PDF plug-in.

Note: For simpler customizations, you may want to structure your plug-in differently, but the
information in this topic may help you to locate the files you need to customize.

The original Idiom plug-in used its own extension mechanism to provide overrides to the PDF
transformation. With this approach, a dedicated Customization folder within the plug-in was
used as a customization layer to store files that override the default behavior.

While this method is no longer recommended, the same organization principles can be used in
custom PDF plug-ins to facilitate comparisons with the default settings in the base PDF plug-in
and make it easier to migrate customizations to new toolkit versions.

.
build.properties.orig
catalog.xml.orig
fo/
 ### attrs/
 # ### custom.xsl.orig
 ### xsl/
 ### custom.xsl.orig

Figure 46: Default Customization folder content

To begin creating a new custom plug-in, you can copy the contents of the customization layer
template in plugins/org.dita.pdf2/Customization to a new folder that will serve as
your new custom plug-in folder, such as plugins/com.company.pdf.

To mimic the hierarchy of the default PDF plug-in, you may want to add a cfg/ subfolder and
move the contents of the fo/ folder to cfg/fo/.

DITA-OT provides template files that you can start with throughout the Customization
directory structure. These files end in the suffix .orig (for example, catalog.xml.orig).
To enable these files, remove the .orig suffix from the copies in your new custom plug-in
folder. (For example, rename catalog.xml.orig to catalog.xml).

You can then make modifications to the copy in your custom plug-in folder, and copy any
other files from the default PDF plug-in that you need to override, such as the page layouts in
layout-masters.xsl, or the font-mappings.xml file that tells your PDF renderer
which fonts to use and where to find them.

Important: Wherever possible, avoid copying entire XSL files from the PDF2 plug-in to
your custom plug-in. Instead, copy only the specific attribute sets and templates that you want
to override. For details, see Plug-in coding conventions on page 151.

Things you can currently override include:

• Custom XSL via xsl/custom.xsl and attrs/custom.xsl

• Layout overrides via layout-masters.xsl

184

Creating custom plug-ins

• Font overrides via font-mappings.xml

• Per-locale variable overrides via common/vars/[language].xml

• I18N configuration via i18n/[language].xml

• Index configuration via index/[language].xml

When customizing any of these areas, modify the relevant file(s) in your custom plug-in folder.
Then, to enable the changes in the publishing process, you find the corresponding entry for each
file you modified in the catalog.xml file.

It should look like this:

<!--uri name="cfg:fo/attrs/custom.xsl" uri="fo/attrs/custom.xsl"/-->

Remove the comment markers !-- and -- to enable the change:

<uri name="cfg:fo/attrs/custom.xsl" uri="fo/attrs/custom.xsl"/>

Your customization should now be enabled as part of the publishing process.

.
plugin.xml
ant-include.xml
cfg/
 ### catalog.xml
 ### common/
 # ### artwork/
 # # ### logo.svg
 # ### vars/
 # ### strings.xml
 # ### en.xml
 ### fo/
 ### attrs/
 # ### custom.xsl
 ### font-mappings.xml
 ### layout-masters.xsl
 ### xsl/
 ### custom.xsl

Figure 47: Sample custom plug-in structure

When your custom plug-in is installed, the files in its subfolders will override the out-of-
the-box settings from their counterparts in org.dita.pdf2/cfg/fo/attrs and
org.dita.pdf2/xsl/fo.

The following topics describe the contents of the base PDF plug-in subfolders and provide
additional information on customizing various aspects of the default PDF output.

Custom artwork

The common/artwork folder houses custom artwork files that override the standard
icons in org.dita.pdf2/cfg/common/artwork.

These files are used to graphically identify different types of DITA <note> element.

The mapping between <note> type and graphic is contained in the common variables file
org.dita.pdf2/cfg/common/vars/commonvariables.xml.

185

Extending DITA-OT with plug-ins

The variables that control <note> graphics all follow the form

<variable id="{type} Note Image Path"> {path to image file} </variable>

where {type} contains a possible value for the <note> @type attribute and {path to
image file} is the path to the note icon image.

Index configuration

The common/index folder houses custom index definition files that override the
standard definitions in org.dita.pdf2/cfg/common/index.

Each file contains data for a single language, and should take that language’s ISO 639-1 language
designator as its name (for example, pt.xml for Portuguese). If necessary, locale-specific
customizations can be provided by adding a region designator to the file name (for example,
pt_BR.xml for Brazilian Portuguese).

The index files consist of <index.group> elements which contain sorting information on one
or more characters. Index groups are listed in sort order (“specials” before numbers, numbers
before the letter ‘A‘, etc), and the <char.set> entries they contain are also listed in sort order
(uppercase before lowercase).

The best way to start editing a custom index file is by making a copy of the original from
org.dita.pdf2/cfg/common/index and making changes as desired.

In order to apply a custom index definition to your publishing outputs, edit catalog.xml and
uncomment the appropriate entry in the “Index configuration override entries” section.

Variable overrides

The common/vars folder houses custom variable definitions that override the standard
definitions in org.dita.pdf2/cfg/common/vars.

As with index configuration, each file contains data for a single language, and should take that
language’s ISO 639-1 language designator as its name.

Variable files contain a set of <variable> elements, identified by their @id attribute. The
variable definitions are used to store static text that is used as part of the published outputs. For
example, page headers, hyperlinks, etc. The id attribute for each variable should make it clear
how the variable text is being used.

Some variables contain <param> elements which indicate parameter values that are substituted
at publish time by the XSL. For example, a page number that is being generated as part of the
publishing process might be identified by <param ref-name="number"/> When editing or
translating a variable file, these should be included in the translation, though they can be moved
and rearranged within the <variable> content as needed.

The best way to start editing a custom variables file is by making a copy of the original from
org.dita.pdf2/cfg/common/vars and making changes as desired. When adding a new
language, start from an existing language’s list of variables and translate each entry as needed.

186

Creating custom plug-ins

Note that unchanged <variable> elements can be omitted: the custom variables file need
only include those <variable> elements which you have modified. Variables not found in the
custom file will are taken from the standard variable files.

Applying a custom variable does not require modifying the catalog.xml file. The publishing
process will automatically use any custom variables definitions in place of the original ones.

Custom attributes

The fo/attrs folder houses custom attribute configuration files that override the
standard attributes in org.dita.pdf2/cfg/fo/attrs.

These files define the appearance of different elements in XML assets when they are rendered to
PDF output. The different DITA elements are organized into files by element type – index-related
definitions in index-attr.xsl, table-related definitions in tables-attr.xsl, etc.

The XSL attribute sets defined in these files can be used to override the presentation of DITA
elements, including font size, color, spacing, etc.

Internationalization configuration

The fo/i18n folder houses custom internationalization files that override the standard
configurations in org.dita.pdf2/cfg/fo/i18n.

As with index configuration and variable overrides, each file contains data for a single language,
and should take that language’s ISO 639-1 language designator as its name.

Each configuration file contains mappings of certain symbols to the Unicode codepoint which
should be used to represent them in the given locale.

The best way to start editing a custom configuration is by making a copy of the original from
org.dita.pdf2/cfg/fo/i18n and making changes as desired.

In order to apply a custom configuration to your publishing outputs, edit catalog.xml and
uncomment the appropriate entry in the “I18N configuration override entries” section.

Custom stylesheets

The fo/xsl folder houses custom stylesheet files that override the default stylesheets in
org.dita.pdf2/xsl/fo.

You can use custom stylesheets to implement additional processing routines or adjust the output
generated by the default toolkit processing.

187

Extending DITA-OT with plug-ins

Example: Creating a simple PDF plug-in

This scenario walks through the process of creating a very simple plug-in
(com.example.print-pdf) that creates a new transformation type: print-pdf.

About this task

The print-pdf transformation has the following characteristics:

• Uses A4 paper

• Renders figures with a title at the top and a description at the bottom

• Removes the period after the number for an ordered-list item

• Use em dashes as the symbols for unordered lists

Procedure

1. In the plugins directory, create a directory named com.example.print-pdf.

2. In the new com.example.print-pdf directory, create a plug-in configuration file
(plugin.xml) that declares the new print-pdf transformation and its dependencies.

1 <?xml·version="1.0"·encoding="UTF-8"?>
2 <?xml-model·href="https://www.dita-ot.org/rng/plugin.rnc"·type="application/relax-
ng-compact-syntax"?>
3

4 <plugin·id="com.example.print-pdf">
5 ··<require·plugin="org.dita.pdf2"/>
6 ··<transtype·name="print-pdf"·extends="pdf"·desc="PDF·on·A4·paper"/>
7 ··<feature·extension="dita.transtype.print"·value="print-pdf"/>
8 ··<feature·extension="ant.import"·file="integrator.xml"/>
9 </plugin>

Figure 48: plugin.xml file

3. Add an Ant script (integrator.xml) to define the transformation type.

 1 <?xml·version='1.0'·encoding='UTF-8'?>
 2 <project>
 3 ··<target·name="dita2print-pdf"
 4 ·······depends="dita2print-pdf.init,
 5 ················dita2pdf2"/>
 6 ··<target·name="dita2print-pdf.init">
 7 ····<property·name="customization.dir"
 8 ··········location="${dita.plugin.com.example.print-pdf.dir}/cfg"/>
 9 ···</target>
10 </project>

Figure 49: integrator.xml file

4. In the new plug-in directory, add a cfg/catalog.xml file that specifies the custom XSLT
style sheets.

1 <?xml·version="1.0"·encoding="UTF-8"?>
2 <catalog·prefer="system"
3 ·········xmlns="urn:oasis:names:tc:entity:xmlns:xml:catalog">
4 ··<uri·name="cfg:fo/attrs/custom.xsl"·uri="fo/attrs/custom.xsl"/>
5 ··<uri·name="cfg:fo/xsl/custom.xsl"·uri="fo/xsl/custom.xsl"/>
6 </catalog>

Figure 50: cfg/catalog.xml file

188

Creating custom plug-ins

5. Create the cfg/fo/attrs/custom.xsl file, and add attribute and variable overrides to
it.
For example, add the following variables to change the page size to A4.

1 <?xml·version="1.0"·encoding="UTF-8"?>
2 <xsl:stylesheet·xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
3 ················version="2.0">
4 ··<!--·Change·page·size·to·A4·-->
5 ··<xsl:variable·name="page-width">210mm</xsl:variable>
6 ··<xsl:variable·name="page-height">297mm</xsl:variable>
7 </xsl:stylesheet>

Figure 51: cfg/fo/attrs/custom.xsl file

6. Create the cfg/fo/xsl/custom.xsl file, and add XSLT overrides to it.
For example, the following code changes the rendering of <figure> elements.

 1 <?xml·version="1.0"·encoding="UTF-8"?>
 2 <xsl:stylesheet·xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 3 ················xmlns:xs="http://www.w3.org/2001/XMLSchema"
 4 ················xmlns:fo="http://www.w3.org/1999/XSL/Format"
 5 ················version="2.0">
 6 ··<!--·Move·figure·title·to·top·and·description·to·bottom·-->
 7 ··<xsl:template·match="*[contains(@class,'·topic/fig·')]">
 8 ····<fo:block·xsl:use-attribute-sets="fig">
 9 ······<xsl:call-template·name="commonattributes"/>
10 ······<xsl:if·test="not(@id)">
11 ········<xsl:attribute·name="id">
12 ··········<xsl:call-template·name="get-id"/>
13 ········</xsl:attribute>
14 ······</xsl:if>
15 ······<xsl:apply-templates·select="*[contains(@class,'·topic/title·')]"/>
16 ······<xsl:apply-templates·select="*[not(contains(@class,'·topic/
title·')·or·contains(@class,'·topic/desc·'))]"/>
17 ······<xsl:apply-templates·select="*[contains(@class,'·topic/desc·')]"/>
18 ····</fo:block>
19 ··</xsl:template>
20 </xsl:stylesheet>

Figure 52: cfg/fo/xsl/custom.xsl file

7. Create an English-language variable-definition file (cfg/common/vars/en.xml) and
make any necessary modifications to it.
For example, the following code removes the period after the number for an ordered-list item;
it also specifies that the bullet for an unordered list item should be an em dash.

1 <?xml·version="1.0"·encoding="UTF-8"?>
2 <variables>
3 ··<!--·Remove·dot·from·list·number·-->
4 ··<variable·id="Ordered·List·Number·1">
5 ····<param·ref-name="number"/>
6 ··</variable>
7 ··<!--·Change·unordered·list·bullet·to·an·em·dash·-->
8 ··<variable·id="Unordered·List·bullet·1">—</variable>
9 </variables>

Figure 53: cfg/common/vars/en.xml file

Results

Tip: The files for this sample plug-in are included in the DITA-OT installation directory under
docsrc/samples/plugins/com.example.print-pdf/ and on GitHub.

189

https://github.com/dita-ot/docs/tree/develop/samples/plugins/com.example.print-pdf

Extending DITA-OT with plug-ins

The plug-in directory has the following layout and files:

com.example.print-pdf
cfg
catalog.xml
common
vars
en.xml
fo
attrs
custom.xsl
xsl
custom.xsl
integrator.xml
plugin.xml

What to do next

1. Use the dita install subcommand to install the plug-in.

Note: For more information, see Chapter 18 Installing plug-ins on page 137.

2. Build output with the new transformation type to verify that the plug-in works as intended.

dita --input=my.ditamap --format=print-pdf

Resources for custom PDF plug-ins

There are several external resources that can help you generate and refine custom PDF
plug-ins for DITA Open Toolkit.

PDF Plugin Generator

This online tool, developed and maintained by Jarno Elovirta, enables you to generate a PDF
customization plug-in automatically.

The application at dita-generator.elovirta.com walks you through the process of creating a custom
PDF plug-in and allows you to adjust a variety of settings for your PDF output. For example, you
can:

• Define the target environment by selecting a version of DITA-OT

• Select the XSL formatting engine (FOP, Antenna House Formatter, or RenderX XEP)

• Specify page size, columns, and margins

• Select from (limited) options for headers and footers

• Specify layout options for chapters

• Select formatting for the following publication components:

• Normal text

• Headings (levels one through four)

• Titles for sections and examples

• Tables and figures

• Notes and examples

• Lists (unordered, ordered, and definition)

190

http://dita-generator.elovirta.com/

Creating custom plug-ins

• Code blocks and pre-formatted text

• Inline elements such as links and trademarks

For each component, you can specify:

• Font family, size, weight, and style

• Color and background color

• Alignment, indentation, spacing, and padding

Tip: The PDF Plugin Generator should be your first stop as you start developing a brand-new
PDF customization plug-in.

DITA for Print: A DITA Open Toolkit Workbook (Second Edition, 2017)

Authored by Leigh W. White, DITA Specialist at IXIASOFT, and published by XML Press,
DITA for Print walks readers through developing a PDF customization from scratch.

Here is an excerpt from the back cover:

DITA for Print is for anyone who wants to learn how to create PDFs using the DITA
Open Toolkit without learning everything there is to know about XSL-FO, XSLT, or
XPath, or even about the DITA Open Toolkit itself. DITA for Print is written for non-
programmers, by a non-programmer, and although it is written for people who have a
good understanding of the DITA standard, you don’t need a technical background to
get custom PDFs up and running quickly.

This is an excellent, long-needed resource that was initially developed in 2013 for DITA-OT 1.8.

The second edition has been revised to cover DITA Open Toolkit Version 2, including
customizing the DITA 1.3 troubleshooting topic type, localization strings, bookmarks, and the
new back-cover functionality.

Important:

The first edition of DITA for Print recommended copying entire files from the PDF2 plug-in
to your custom plug-in. The DITA-OT project — and the second edition of the book — do not
recommend this practice.

Instead, you should copy only the specific attribute sets and templates that you want to
override. Following this practice will more cleanly isolate your customizations from the
DITA-OT code, which will make it easier for you to update your plug-ins to work with future
versions of DITA-OT.

DITA for Practitioners: Volume 1, Architecture and Technology (2012)

Authored by Eliot Kimber and published by XML Press, this seminal resource contains a chapter
dedicated to DITA Open Toolkit: “Running, Configuring, and Customizing the Open Toolkit”.
In addition to a robust overview of DITA-OT customization and extension, the chapter contains
a detailed example of customizing a PDF plug-in to specify 7" × 10" paper size and custom fonts
for body text and headers.

191

Extending DITA-OT with plug-ins

The DITA-OT chapter in DITA for Practitioners: Volume 1 was written for DITA-OT 1.5.4,
which was the latest stable version at the time it was written.

Globalizing DITA content
The DITA standard supports content that is written in or translated to any language. In
general, DITA Open Toolkit passes content through to the output format unchanged.
DITA-OT uses the values for the @xml:lang and @dir attributes that are set in the
source content to provide globalization support. You can create custom plug-ins to
support additional languages.

Globalization support

DITA Open Toolkit supports globalization with generated text strings, index sorting, and
bi-directional text.

Generated text Generated text is text that is rendered
automatically in the output that is generated by
DITA-OT; this text is not located in the DITA
source files. The following are examples of
generated text:

• The word “Chapter” in a PDF file.

• The phrases “Related concepts”, “Related
tasks”, and “Related reference” in HTML
output.

Index sorting DITA-OT can use only a single language to
sort indexes.

Bi-directional text DITA-OT contains style sheets (CSS files)
that support both left-to-right (LTR) and right-
to-left (RTL) languages in HTML-based
transformations. PDF supports both LTR
and RTL rendering based on the document
language. The @dir attribute can be used to
override the default rendering direction.

When DITA-OT generates output, it takes the first value that it encounters for the @xml:lang
attribute, and uses that value to create generated text, sort index entries, and determine which
default CSS file is used. If no value for the @xml:lang attribute is found, the toolkit defaults
to U.S. English. You can use the Chapter 15 Configuration properties on page 99 to change the
default language.

192

Creating custom plug-ins

Supported languages

The following languages are supported for PDF and HTML-based output.

Note: While language codes listed below use the conventional capitalization style of "aa-BB"
and "aa-Script-BB", DITA-OT processing is not case sensitive when reading these values from
the @xml:lang attribute.

Table 4: Supported languages

Language Language code Notes

####### (Arabic) ar or ar-EG Defaults to right-to-left presentation.

########## (Belarusian) be or be-BY

Bosanski (Bosnian) bs or bs-BA

######### (Bulgarian) bg or bg-BG

Català (Catalan) ca-ES

(Simplified Chinese) zh-CN or zh-Hans PDF index is not properly collated by default.

(Traditional Chinese) zh-TW or zh-Hant PDF index is not properly collated by default.

Hrvatski (Croatian) hr or hr-HR

#eština (Czech) cs or cs-CZ

Dansk (Danish) da or da-DK

Nederlands (Dutch) nl or nl-NL Subset of generated text also available for Belgian
Dutch (nl-BE)

English (US) en or en-US Subset of generated text also available for British
English (en-GB) and Canadian English (en-CA)

Eesti (Estonian) et or et-EE

Suomi (Finnish) fi or fi-FI

Français (French) fr or fr-FR Subset of generated text also available for Belgian
French (fr-BE), Canadian French (fr-CA), and Swiss
French (fr-CH)

Deutsch (German) de or de-DE Subset of generated text also available for Swiss
German (de-CH)

######## (Greek) el or el-GR

(Hebrew) he or he-IL Defaults to right-to-left presentation.

(Hindi) hi or hi-HI

Magyar (Hungarian) hu or hu-HU

Íslenska (Icelandic) is or is-IS

Bahasa Indonesia
(Indonesian)

id or id-ID

Italiano (Italian) it or it-IT Subset of generated text also available for Swiss
Italian (it-CH)

(Japanese) ja or ja-JP PDF index is not properly collated by default.

193

Extending DITA-OT with plug-ins

Language Language code Notes

####### (Kazakh) kk or kk-KZ

(Korean) ko or ko-KR

Latviešu (Latvian) lv or lv-LV

Lietuvi# (Lithuanian) lt or lt-LT

########## (Macedonian) mk or mk-MK

Bahasa Melayu (Malay) ms or ms-MY

Crnogorski (Montenegrin) sr-Latn-ME

Norsk (Norwegian) no or no-NO

Polski (Polish) pl or pl-PL

Português (Portuguese) pt or pt-PT

Português do Brasil (Brazilian
Portuguese)

pt-BR

Român# (Romanian) ro or ro-RO

####### (Russian) ru or ru-RU

(Serbian - Cyrillic
script)

sr, sr-CS, sr-RS, or
sr-SP

Srpski (Serbian - Latin script) sr-Latn-RS

Sloven#ina (Slovak) sk or sk-SK

Slovenš#ina (Slovenian) sl or sl-SI

Español (Spanish) es or es-ES Also supported using es-419 (Latin American
Spanish).

Svenska (Swedish) sv or sv-SE

####### (Thai) th or th-TH

Türkçe (Turkish) tr or tr-TR

########## (Ukrainian) uk or uk-UA

(Urdu) ur or ur-PK Defaults to right-to-left presentation.

Ti#ng Vi#t (Vietnamese) vi or vi-VN

Customizing generated text

Generated text is the term for strings that are automatically added by the build process,
such as the word “Note” before the contents of a <note> element.

dita.xsl.strings Add new strings to generated text file.

The generated text extension point is used to add new strings to the default set of generated text
from org.dita.base for any non-PDF transformation type and from org.dita.pdf2 for PDF. It also
creates the <gentext> element in the intermediate files used by the toolkit. There are several
reasons you may want to use the dita.strings.xsl extension point:

194

Creating custom plug-ins

• It can be used to add new text for your own processing extensions; for example, it could
be used to add localized versions of the string “User response” to aid in rendering
troubleshooting information.

• It can be used to override the default strings in the toolkit; for example, it could be used to
reset the English string “Figure” to “Fig.”

• It can be used to add support for new languages. For example, it could be used to add support
for Vietnamese or Gaelic; it could also be used to support a new variant of a previously
supported language, such as Australian English.

If two plug-ins define the same string or add support for the same language using different
values, the result will be non-deterministic. In other words, when the same content is processed
multiple times, you may get inconsistent generated text results. This is because the toolkit cannot
determine which string to use, since more than one match is found. Avoid this possibility by
ensuring that only one plug-in defines or overrides string values for each string in each language.
Also consider using a naming convention for attributes used to look up the string value by using
the ID or purpose of your plug-in.

Generated strings are available to the getVariable template used in many DITA-OT XSLT
files.

Prior to DITA-OT 3.7, there were two different XML structures for adding or modifying
generated text (gentext). The base plug-in org.dita.base and any custom overrides defined via the
dita.strings.xsl extension point used a root element <strings>, with individual strings
in <str> elements with @name attributes. This format was previously used for HTML, and all
other output formats except PDF.

1 <?xml·version="1.0"·encoding="utf-8"?>
2 <strings·xml:lang="en-US">
3 ··<str·name="String1">English·generated·text</str>
4 </strings>

Figure 54: Base strings file structure prior to DITA-OT 3.7

The PDF plug-in org.dita.pdf2 used a root element <vars> with an XML namespace, and
strings in <variable> elements with @id attributes.

1 <?xml·version="1.0"·encoding="UTF-8"?>
2 <vars·xmlns="http://www.idiominc.com/opentopic/vars">
3 ··<variable·id="String1">English·generated·text</variable>
4 </vars>

Figure 55: PDF2 strings file structure prior to DITA-OT 3.7

Starting with DITA-OT 3.7, these structures have been deprecated and replaced with a new
unified format. All files now use <variables> as the root element, with the <variable>
elements previously used in PDF strings. The new format supports the XSL parameters used by
the earlier PDF strings format to pass dynamic information such as chapter numbers or figure
titles.

1 <?xml·version="1.0"·encoding="UTF-8"?>
2 <variables>
3 ··<variable·id="String1">English·generated·text</variable>
4 </variables>

Figure 56: New common variable format as of DITA-OT 3.7

195

Extending DITA-OT with plug-ins

The old formats are still supported, but plug-in developers should update any generated text files
to reflect the new structure, as support for the old formats may be removed in a future release.
#3817

Adding new strings

Add new generated strings to your plug-in for the toolkit to include in your output.

Procedure

1. Copy this file to your plug-in.

• non-PDF output: plugins/org.dita.base/xsl/common/strings.xml

• PDF output: plugins/org.dita.pdf2/cfg/common/vars/strings.xml

2. In your plug-in, edit strings.xml to contain references to the language files for which you
are providing custom strings.

The en-US language must be present; other language files are optional.

 1 <?xml·version="1.0"·encoding="UTF-8"?>
 2 <!--·Provide·strings·for·my·plug-in;·this·plug-in·supports
 3 ·····English,·Icelandic,·and·Russian.·-->
 4 <langlist>
 5 ··<lang·xml:lang="en"·····filename="my-added-strings-en-us.xml"/>
 6 ··<lang·xml:lang="en-US"··filename="my-added-strings-en-us.xml"/>
 7 ··<lang·xml:lang="is"·····filename="my-added-strings-is-is.xml"/>
 8 ··<lang·xml:lang="is-IS"··filename="my-added-strings-is-is.xml"/>
 9 ··<lang·xml:lang="ru"·····filename="my-added-strings-ru-ru.xml"/>
10 ··<lang·xml:lang="ru-RU"··filename="my-added-strings-ru-ru.xml"/>
11 </langlist>

3. In xsl/common or cfg/common/vars, create a new file called my-added-strings-
en-us.xml.

1 <?xml·version="1.0"·encoding="UTF-8"?>
2 <variables>
3

4 </variables>

4. For each new string you want, add a <variable> element with an @id attribute and the
text you want the toolkit to use.

The @id attribute value must be unique in the file and should reflect the purpose of the
generated text.

The toolkit uses the text found inside the element when inserting generated text.

1 <?xml·version="1.0"·encoding="UTF-8"?>
2 <variables>
3 ··<variable·id="String1">English·generated·text</variable>
4 ··<variable·id="Another·String">Another·string·in·English</variable>
5 </variables>

5. Repeat step 3 on page 196 and step 4 on page 196 for each language.

6. Update your plugin.xml file to extend the strings available.

1 <plugin·id="com.example.your-plugin">
2 ··<feature·extension="dita.xsl.strings"·file="xsl/common/strings.xml"/>
3 </plugin>

196

https://github.com/dita-ot/dita-ot/issues/3817

Creating custom plug-ins

Your custom strings are available to your stylesheets. For example, if processing in a context
where the @xml:lang value is en-US, the following call returns “Another string in
English” because it was defined as the text for the variable with @id value of Another
String in step 4 on page 196.

1 <xsl:call-template·name="getVariable">
2 ··<xsl:with-param·name="id"·select="'Another·String'"/>
3 </xsl:call-template>

You can also use the same strings in multiple languages by assigning a file with common
strings to each language in addition to the language-specific custom strings files.

 1 <?xml·version="1.0"·encoding="UTF-8"?>
 2 <langlist>
 3 ··<lang·xml:lang="en"·····filename="my-added-strings-en-us.xml"/>
 4 ··<lang·xml:lang="en-US"··filename="my-added-strings-en-us.xml"/>
 5 ··<lang·xml:lang="en"·····filename="my-added-strings-mul.xml"/>
 6 ··<lang·xml:lang="en-US"··filename="my-added-strings-mul.xml"/>
 7 ··<lang·xml:lang="is"·····filename="my-added-strings-is-is.xml"/>
 8 ··<lang·xml:lang="is-IS"··filename="my-added-strings-is-is.xml"/>
 9 ··<lang·xml:lang="is"·····filename="my-added-strings-mul.xml"/>
10 ··<lang·xml:lang="is-IS"··filename="my-added-strings-mul.xml"/>
11 ··<lang·xml:lang="ru"·····filename="my-added-strings-ru-ru.xml"/>
12 ··<lang·xml:lang="ru-RU"··filename="my-added-strings-ru-ru.xml"/>
13 ··<lang·xml:lang="ru"·····filename="my-added-strings-mul.xml"/>
14 ··<lang·xml:lang="ru-RU"··filename="my-added-strings-mul.xml"/>
15 </langlist>

Overriding strings

Override the default strings in the toolkit when you want to replace an existing string
with one of your own; for example, it could be used to reset the English string “Figure”
to “Fig.”

Procedure

1. Copy this file to your plug-in.

• non-PDF output: plugins/org.dita.base/xsl/common/strings.xml

• PDF output: plugins/org.dita.pdf2/cfg/common/vars/strings.xml

2. In your plug-in, edit strings.xml to contain references to the language files you want to
override.

1 <?xml·version="1.0"·encoding="UTF-8"?>
2 <!--·Provide·strings·for·my·plug-in;·this·plug-in·supports
3 ·····English·and·German.·-->
4 <langlist>
5 ··<lang·xml:lang="en"·····filename="strings-en-us.xml"/>
6 ··<lang·xml:lang="en-US"··filename="strings-en-us.xml"/>
7 ··<lang·xml:lang="de"·····filename="strings-de-de.xml"/>
8 ··<lang·xml:lang="de-DE"··filename="strings-de-de.xml"/>
9 </langlist>

3. Copy the language file from you want to override. Paste it into your plug-in's xsl/common
or cfg/common/vars directory.

Language files are found in:

• non-PDF output: plugins/org.dita.base/xsl/common/

197

Extending DITA-OT with plug-ins

• PDF output: plugins/org.dita.pdf2/cfg/common/vars/

4. Open the language file. Remove all of the variables except those you want to override.

By removing the variables you will not override, you limit where variables are defined in the
toolkit while making your file easier to maintain.

5. Change the contents of the variable to your desired text.

Do not modify the @id attribute.

1 <variables>
2 ···<variable·id="Figure">Fig.</variable>
3 </variables>

6. Update your plugin.xml file to extend the strings available.

1 <plugin·id="com.example.your-plugin">
2 ··<feature·extension="dita.xsl.strings"·file="xsl/common/strings.xml"/>
3 </plugin>

Your overrides are available to your stylesheets. For example, if processing in a context where
the @xml:lang value is en-US, the following call returns “Fig.”, because it was defined as
the text for the variable with @id value of Figure in step 5 on page 198, which overrides
the default text found in org.dita.base.

1 <xsl:call-template·name="getVariable">
2 ··<xsl:with-param·name="id"·select="Figure"/>
3 </xsl:call-template>

Adding new languages

Extend the toolkit’s generated text capabilities by adding new language files.

Procedure

1. Copy this file to your plug-in.

• non-PDF output: plugins/org.dita.base/xsl/common/strings.xml

• PDF output: plugins/org.dita.pdf2/cfg/common/vars/strings.xml

2. In your plug-in, edit strings.xml to contain references to the language files for which you
are providing custom strings.

1 <?xml·version="1.0"·encoding="UTF-8"?>
2 <!--·Provide·new·languages·for·Gaelic·and·Vietnamese.·-->
3 <langlist>
4 ··<lang·xml:lang="ga"·····filename="strings-ga-ga.xml"/>
5 ··<lang·xml:lang="ga-GA"··filename="strings-ga-ga.xml"/>
6 ··<lang·xml:lang="vi"·····filename="strings-vi-vn.xml"/>
7 ··<lang·xml:lang="vi-VN"··filename="strings-vi-vn.xml"/>
8 </langlist>

3. Copy this file to your plug-in into the same directory as step 1 on page 198.

• non-PDF output: plugins/org.dita.base/xsl/common/strings-en-
us.xml

• PDF output: plugins/org.dita.pdf2/cfg/common/vars/en.xml

198

Creating custom plug-ins

4. Rename the file to match the language you wish to add (for instance, strings-vi-
vn.xml).

5. Without changing the @id value, replace the generated text string for each variable.

1 <variables>
2 ···<variable·id="Figure">Hi#nh</variable>
3 ···<variable·id="Table">Ba#ng</variable>
4 ···<variable·id="Next·topic">Chu#·#ê#·tiê#p·theo</variable>
5 ·····[...]
6 ···<variable·id="Copyright">Ba#n·quyê#n</variable>
7 ···<variable·id="a11y.and-then"/>
8 </variables>

6. Repeat step 3 on page 198 to step 5 on page 199 for each language.

7. Update your plugin.xml file to extend the strings available.

1 <plugin·id="com.example.your-plugin">
2 ··<feature·extension="dita.xsl.strings"·file="xsl/common/strings.xml"/>
3 </plugin>

Your custom language strings are available to your stylesheets. For example, if processing in
a context where the @xml:lang value is vi-VN, the following call returns “Chu# #ê# tiê#p
theo” because it was defined as the text for the variable with @id value of Next topic in
step 5 on page 199.

1 <xsl:call-template·name="getVariable">
2 ··<xsl:with-param·name="id"·select="'Next·topic'"/>
3 </xsl:call-template>

Migrating customizations
If you have XSL transformation overrides, plug-ins or other customizations written prior
to DITA-OT 4.3, you may need to make changes to ensure your overrides work properly
with the latest toolkit versions.

In some cases, you may be able to remove old code that is no longer needed. In other cases, you
may need to refactor your code to point to the modified extension points, templates or modes in
recent toolkit versions.

When migrating customizations, identify the version of the toolkit you're currently using (base
version) and the version of the toolkit you want to migrate to (target version). Then, review
all of the migration changes described in all of the versions from the base through the target.
For instance, if you're currently on 2.2 and want to move to 3.3, you should review all of the
changes in 2.3 through 3.3. You may want to start at the oldest version and read forward so you
can chronologically follow the changes, since it is possible that files or topics have had multiple
changes.

199

Extending DITA-OT with plug-ins

Note:

DITA-OT releases follow semantic versioning guidelines. Version numbers use the
major.minor.patch syntax, where major versions may include incompatible API
changes, minor versions add functionality in a backwards-compatible manner and patch
versions are maintenance releases that include backwards-compatible bug fixes.

Custom plug-ins developed for a previous major version may require changes to work
correctly with recent toolkit versions. Most plug-ins should be compatible with subsequent
minor and patch versions of the major release for which they were originally developed.

Migrating to release 4.3

DITA-OT 4.3 includes new init and validate subcommands that can be used to set
up projects from a template and check files for errors before publishing. You can now
publish multiple formats on the command line at once, add raw DITA to Markdown files,
and publish bookmaps with PDF themes.

Note: This topic provides a summary of changes in DITA-OT 4.3 that may require
modifications to custom stylesheets or plug-ins. For more information on changes in this
release, see the DITA-OT 4.3 Release Notes.

Bookmap support in PDF themes

The PDF theme plug-in com.elovirta.pdf has been updated to version 0.8 for better
bookmap support. #111 You can now style the following bookmap elements in a YAML or JSON
theme without building a custom PDF plug-in:

• <part>

• <chapter>

• <appendix>

• <index>

Table of contents (ToC) styles have moved to the root style key. ToC styling has also been
extended for better bookmap support, so you can now specify styles for each level with dedicated
keys such as style-toc-part, style-toc-chapter, etc.

Parts and chapters now also support their own local contents listings, which you can enable by
setting the corresponding layout key, for example chapter-layout: MINITOC. You can
then define styling for each level via keys like style-part-toc-chapter, or style-
chapter-toc-1.

A new default theme provides basic styling such as font settings, indentation, and title
numbering for a range of commonly used elements. This theme is not intended for publishing
as is, but can serve as a foundation for custom themes, and reduce the number of elements you
need to style yourself. To use the default theme as the baseline for your own custom theme, add
extends: default to your theme file. #112, #114

200

https://semver.org
https://www.dita-ot.org/4.3/release-notes/
https://github.com/jelovirt/pdf-generator/pull/111
https://github.com/jelovirt/pdf-generator/pull/112
https://github.com/jelovirt/pdf-generator/pull/114

Creating custom plug-ins

Legacy sample files removed

The legacy Ant samples and garage sample files have been removed from the docsrc/
samples subfolder of the installation directory. If your workflow relies on these files, you can
restore them to the original location with the new init subcommand:

dita init samples path/to/dita-ot-dir/docsrc/samples

Migrating to release 4.2

DITA-OT 4.2 uses map-first pre-processing for HTML5 output and includes a new local
configuration file, better CLI messages with support for overrides, a new version of the
Lightweight DITA plug-in with enhancements to Markdown processing, and updates for
the latest DITA 2.0 draft standard.

Note: This topic provides a summary of changes in DITA-OT 4.2 that may require
modifications to custom stylesheets or plug-ins. For more information on changes in this
release, see the DITA-OT 4.2 Release Notes.

Common CSS changes

DITA-OT 4.2 includes several changes to the cascading style sheets generated by the HTML5
plug-in.

• HTML5 processing for <note> elements now wraps the note body in a <div> element with
the note__body class, allowing it to be styled separately from the note title. For backwards
compatibility, the common CSS files have been updated to display the note body inline with
the note title to avoid a new line break before the content division element. #3955

• The DITA standard defines a @compact attribute for list elements. Previously, this attribute
was published to XHTML and HTML5 as an HTML @compact attribute. However, the
@compact attribute was deprecated in HTML4 (over 20 years ago). Now, DITA @compact
attributes are published to XHTML and HTML5 as @class="compact" keywords.
New rules with the class selectors have been added to the default CSS files. Rules with the
legacy @compact list attributes have been marked as deprecated with Sass @warn rules and
will be removed from a future version of DITA-OT. Any custom CSS rules referencing the
@compact attribute should be updated. #4298, #4303, #4358

• Legacy table presentation classes that were deprecated in DITA-OT 2.3 have now been
removed from the common CSS files. #4364

• cellrowborder

• row-nocellborder

• cell-norowborder

• nocellnorowborder

• firstcol

201

https://www.dita-ot.org/4.2/release-notes/
https://github.com/dita-ot/dita-ot/issues/3955
https://github.com/dita-ot/dita-ot/issues/4298
https://github.com/dita-ot/dita-ot/issues/4303
https://github.com/dita-ot/dita-ot/issues/4358
https://github.com/dita-ot/dita-ot/issues/4364

Extending DITA-OT with plug-ins

Attention: In publishing environments that do not use the default CSS files — or those
that include HTML generated by older versions of DITA-OT — these styles may need to be
implemented in custom stylesheets.

Upgrade stylesheets to XSLT3

DITA-OT 4.2 updates XSLT stylesheet headers from XSLT version 1.0 and 2.0 to version 3.0 to
make way for the use of XSLT3 features in future toolkit versions.

This is a backwards-compatible change, as there are no changes to the actual code; only the
stylesheet headers have been modified for now. This approach has been chosen to help identify
any external or third-party incompatibilities that might result from switching to XSLT3.

Attention: The next major version of DITA-OT will upgrade template content to use XSLT3
syntax.

To ensure plug-ins remain compatible with future versions of DITA-OT and Saxon-HE, the
DITA Open Toolkit project recommends upgrading all stylesheets to XSLT 3.0.

Change any occurrences of <xsl:stylesheet version="1.0"> or
<xsl:stylesheet version="2.0"> in custom plug-in stylesheets to at least
<xsl:stylesheet version="3.0">.

Map-first pre-processing

DITA-OT provides a map-first pre-processing option as an alternative to the default
preprocess operation. The method, which was introduced in DITA-OT 2.5 as an experimental
feature, has since been improved and is ready for use in production scenarios. Map-first pre-
processing provides the same functionality as the default preprocess, but takes a different
approach.

The internal extension points that run before or after individual steps in the original
preprocess pipeline (preprocess.*.pre/preprocess.*.post) are not available
in the newer map-first pre-processing pipeline (preprocess2), which is used in the PDF and
HTML Help transformations as of DITA-OT 3.0, and in HTML5 and Normalized DITA output
as of DITA-OT 4.2.

Tip: See Map-first pre-processing on page 290 for information on how to use (or test) map-
first pre-processing, or revert to the legacy preprocess target.

202

Creating custom plug-ins

Migrating to release 4.1

DITA-OT 4.1 includes a new version of the Lightweight DITA plug-in with significant
enhancements to Markdown processing, and updates for the latest DITA 2.0 draft
standard.

Note: This topic provides a summary of changes in DITA-OT 4.1 that may require
modifications to custom stylesheets or plug-ins. For more information on changes in this
release, see the DITA-OT 4.1 Release Notes.

Legacy <tt> style attributes moved to CSS

The HTML5 plug-in has been updated to remove the remaining inline style attributes that
prevented custom plug-ins from overriding the monospace font presentation of teletype <tt>
elements.

These changes move the default teletype styling to CSS to allow users to override the
presentation in custom stylesheets. The output is visually equivalent to the results generated by
previous toolkit versions.

Important: In publishing environments that do not use the default CSS files, these styles may
need to be implemented in custom stylesheets.

Migrating to release 4.0

DITA-OT 4.0 requires Java 17 and includes a new plug-in for easier PDF customization,
project file improvements, updates to LwDITA processing, and support for the split
chunking feature in the latest draft of the upcoming DITA 2.0 standard.

Note: This topic provides a summary of changes in DITA-OT 4.0 that may require
modifications to custom stylesheets or plug-ins. For more information on changes in this
release, see the DITA-OT 4.0 Release Notes.

DITA-OT now requires Java 17

DITA-OT 4.3 is designed to run on Java version 17 or later and built and tested with the Open
Java Development Kit (OpenJDK). Compatible Java distributions are available from multiple
sources:

• You can download Oracle distributions from oracle.com/java under commercial license.

• Eclipse Temurin is the free OpenJDK distribution available from adoptium.net.

• Free OpenJDK distributions are also provided by Amazon Corretto, Azul Zulu, and Red Hat.

• Java versions are also available via package managers such as Chocolatey, Homebrew, or
SDKMAN!

203

https://www.dita-ot.org/4.1/release-notes/
https://www.dita-ot.org/4.0/release-notes/
https://www.oracle.com/java/technologies/downloads/
https://adoptium.net/temurin/releases/?version=17
https://aws.amazon.com/corretto/
https://www.azul.com/downloads/
https://developers.redhat.com/products/openjdk/download
https://chocolatey.org/
https://brew.sh
https://sdkman.io/jdks

Extending DITA-OT with plug-ins

Note: The Java virtual machine is generally backwards compatible, so class files built with
earlier versions should still run correctly with Java 17 and DITA-OT 4.3. If your DITA-OT
installation contains plug-ins with custom Java code, you may need to recompile these with
Java 17 — but in most cases, this step should not be necessary.

Deprecated attribute set reflection in PDF2

The legacy attribute set reflection in PDF2 has been replaced with code that generates new
attribute sets directly. This change is backwards-compatible as the old attribute set reflection code
has been retained, but PDF2 now uses the new attribute set generation mechanism everywhere
reflection was used. Custom plug-ins that still use reflection should be updated to the new
approach, as the legacy code may be removed in a future version. #3827, #3829

Code references now default to UTF-8 encoding

The default character set for code references has been changed from the system default encoding
to UTF-8.

This allows a wider range of characters to be used without needing to specify the @format
attribute on the <coderef> element as described in character set definition or change the
default encoding in the configuration.properties file. #4046

Note: If you have code references that require a different encoding, use either of these
mechanisms to specify the character set explicitly.

Deprecated place-tbl-lbl template in HTML5

The place-tbl-lbl template that was originally used to define table titles in XHTML has
been deprecated in HTML5 processing and will be removed in a future release. This template was
carried over from XHTML code (which still has a copy that is used), but the copy in HTML5 is
not called. #3435, #4056

Deprecated skip properties

Many Ant targets refer to skip properties that can be used to disable pre-processing steps. In
earlier releases, these properties were not set or named consistently; they are now generated
automatically with more consistent naming and behavior. #3845, #3851

As of DITA-OT 4.0, direct use of these internal properties is deprecated, and will stop the build
with an error:

[DOTA015F] Internal property preprocess.copy-flag.skip may not be
set directly. Use property build-step.copy-flag instead.

• For example, if your custom plug-ins previously used skip properties to disable pre-
processing steps,

• <property name="preprocess.copy-image.skip" value="true"/>

• <property name="preprocess.copy-html.skip" value="true"/>

• <property name="preprocess.copy-flag.skip" value="true"/>

204

https://github.com/dita-ot/dita-ot/issues/3827
https://github.com/dita-ot/dita-ot/issues/3829
https://github.com/dita-ot/dita-ot/issues/4046
https://github.com/dita-ot/dita-ot/issues/3435
https://github.com/dita-ot/dita-ot/issues/4056
https://github.com/dita-ot/dita-ot/issues/3845
https://github.com/dita-ot/dita-ot/issues/3851

Creating custom plug-ins

• use the new Boolean build-step properties instead.

• <property name="build-step.copy-image" value="false"/>

• <property name="build-step.copy-html" value="false"/>

• <property name="build-step.copy-flag" value="false"/>

Migrating to release 3.7

DITA-OT 3.7 includes stable IDs in re-used content, a common variable format
for generated text strings, and an updated preview of features for the latest draft
of the upcoming DITA 2.0 standard, such as the new “combine” chunk action, the
<titlealt> element, and the alternative titles domain.

Note: This topic provides a summary of changes in DITA-OT 3.7 that may require
modifications to custom stylesheets or plug-ins. For more information on changes in this
release, see the DITA-OT 3.7 Release Notes.

Common format for generated text

Prior to DITA-OT 3.7, there were two different XML structures for adding or modifying
generated text (gentext). The base plug-in org.dita.base and any custom overrides defined via the
dita.strings.xsl extension point used a root element <strings>, with individual strings
in <str> elements with @name attributes. This format was previously used for HTML, and all
other output formats except PDF.

1 <?xml·version="1.0"·encoding="utf-8"?>
2 <strings·xml:lang="en-US">
3 ··<str·name="String1">English·generated·text</str>
4 </strings>

Figure 57: Base strings file structure prior to DITA-OT 3.7

The PDF plug-in org.dita.pdf2 used a root element <vars> with an XML namespace, and
strings in <variable> elements with @id attributes.

1 <?xml·version="1.0"·encoding="UTF-8"?>
2 <vars·xmlns="http://www.idiominc.com/opentopic/vars">
3 ··<variable·id="String1">English·generated·text</variable>
4 </vars>

Figure 58: PDF2 strings file structure prior to DITA-OT 3.7

Starting with DITA-OT 3.7, these structures have been deprecated and replaced with a new
unified format. All files now use <variables> as the root element, with the <variable>
elements previously used in PDF strings. The new format supports the XSL parameters used by

205

https://www.dita-ot.org/3.7/release-notes/

Extending DITA-OT with plug-ins

the earlier PDF strings format to pass dynamic information such as chapter numbers or figure
titles.

1 <?xml·version="1.0"·encoding="UTF-8"?>
2 <variables>
3 ··<variable·id="String1">English·generated·text</variable>
4 </variables>

Figure 59: New common variable format as of DITA-OT 3.7

The old formats are still supported, but plug-in developers should update any generated text files
to reflect the new structure, as support for the old formats may be removed in a future release.
#3817

CSS precedence

The order of elements in the <head> element of the HTML template files was changed to
facilitate overrides. The common CSS stylesheets and any custom CSS files specified via
args.css now come after the contents of the custom header file specified via args.hdf.
This change better supports use cases in which the custom header file is used to insert references
to external CSS stylesheets for frameworks like Bootstrap. In previous versions of DITA-OT,
framework styles took precedence over any equivalent rules in the user’s custom stylesheet.
This change allows rules in custom CSS files specified via args.css to override any of the
framework styles as necessary.

Deprecated legacy gen-user templates

The legacy gen-user templates that were originally used to add content to the <head>
element have been deprecated and will be removed in a future release. For each of these
templates, parameter-based customizations are available that can be used to specify files that
contain content that extends the default processing. #3835

• gen-user-head # use args.hdf instead

• gen-user-header # use args.hdr

• gen-user-footer # use args.ftr

• gen-user-scripts # use args.hdf

• gen-user-styles # use args.css

Ancestor links

The mappull processing step has changed how related links are generated with
args.rellinks. Starting in 3.7, noparent will not generate any ancestor links and
nofamily will not generate sibling, cousin, ancestor, or descendant links.

Prior to 3.7, args.rellinks=all did not actually include all links. Now it will. As in
previous versions, the default value for PDF output is nofamily, and other output formats
include all link roles except ancestor links.

The default processing sets the internal Ant property include.rellinks to #default
parent child sibling friend next previous cousin descendant
sample external other.

206

https://github.com/dita-ot/dita-ot/issues/3817
https://getbootstrap.com/docs/5.0/getting-started/introduction/#css
https://github.com/dita-ot/dita-ot/issues/3835

Creating custom plug-ins

ToC navigation role

Table of contents navigation in HTML5 output used a <nav> element with the ARIA @role
attribute set to toc. Certain accessibility tools flagged this as an error. The invalid role has
been replaced with the navigation landmark role. A new toc class allows custom CSS
styles to target the ToC navigation. CSS rules that use the nav[role='toc'] selector can be
simplified to nav.toc.

Common attributes mode

A commonattributes mode was added to the HTML5, PDF, and XHTML plug-ins to allow
for easier extension. This is a backwards compatible change, however, existing plug-ins should
be changed to use the new commonattributes mode.

<xsl:template name="commonattributes">
 <!-- whole copy of commonattributes named template with customizations -->
</xsl:template>

Figure 60: Named template prior to version 3.7

<xsl:template match="@* | node()" mode="commonattributes">
 <xsl:param name="default-output-class" as="xs:string*"/>
 <xsl:next-match>
 <xsl:with-param name="default-output-class" select="$default-output-class"/>
 </xsl:next-match>
 <!-- customizations -->
</xsl:template>

Figure 61: Template mode as of version 3.7

XSL modes

The HTML5 stylesheets were updated to use XSL modes instead of named templates.

This is a backwards compatible change, however, existing plug-ins should be changed to use
modes instead of named templates for:

• copyright

• gen-endnotes

• generateDefaultMeta

• generateCssLinks

• generateChapterTitle

• processHDF

• generateBreadcrumbs

• processHDR

• processFTR

• generateCharset

Migrating to release 3.6

DITA-OT 3.6 includes performance enhancements such as processing in parallel and in
memory, support for PDF changebars with Apache™ FOP, and an updated preview of

207

Extending DITA-OT with plug-ins

features for the latest draft of the upcoming DITA 2.0 standard, including the <audio>
and <video> elements, and the new emphasis domain.

Note: This topic provides a summary of changes in DITA-OT 3.6 that may require
modifications to custom stylesheets or plug-ins. For more information on changes in this
release, see the DITA-OT 3.6 Release Notes.

Parallel processing

Pre-processing module code can now be run in parallel by setting the parallel parameter to
true. The performance benefits this option provides depend heavily on the source file set, the
DITA features used in the project, and the computer doing the processing, but under the right
circumstances, you may see notable improvements when this option is enabled.

In-memory processing

DITA-OT 3.6 introduces a new Store API with preview support for in-memory processing. The
Cache Store can be activated by setting the store-type parameter to memory. In-memory
processing provides performance advantages in I/O bound environments such as cloud computing
platforms, where processing time depends primarily on how long it takes to read and write
temporary files. For more information, see Store API – Processing in memory on page 294.

Caching DITA class instances

The DITA-OT Java code uses a new caching DitaClass.getInstance(cls) factory
method rather than generating DitaClass instances directly. This allows previously created
instances to be re-used, which reduces the number of instances that need to be created.

Important: Custom plug-ins that use the DitaClass constructor in Java code should be
updated to use the getInstance factory method instead.

PDF changebars with Apache™ FOP

For DITA-OT 3.4, the bundled Apache™ Formatting Objects Processor library was upgraded
to version 2.4, which included support for changebars, but those features were not yet enabled
in DITA-OT 3.4 pending further testing. DITA-OT 3.6 removes the FOP-specific overrides that
disabled changebars in earlier versions, allowing the default PDF2 flagging routines to be applied
when generating PDFs with FOP. For details, see Generating revision bars on page 113.

Plug-ins that implemented custom FOP flagging by overriding the org.dita.pdf2.fop/
xsl/fo/flagging_fop.xsl stylesheet in prior versions will need to be updated, as this file
is no longer available in DITA-OT 3.6. #3511, #3591

Dublin Core metadata removed from HTML5

Up to version 3.5, DITA-OT included the Dublin Core Metadata Element Set in both XHTML
and HTML5 output. DITA-OT 3.6 no longer generates Dublin Core metadata in HTML5 output.

208

https://www.dita-ot.org/3.6/release-notes/
https://github.com/dita-ot/dita-ot/issues/3511
https://github.com/dita-ot/dita-ot/issues/3591
https://dublincore.org/specifications/dublin-core/dcmi-terms

Creating custom plug-ins

Tip: If necessary, the org.dita.html5.dublin-core plug-in can be installed from the plug-in
registry at dita-ot.org/plugins to add Dublin Core metadata to HTML5.

To install the plug-in, run the following command:

dita install org.dita.html5.dublin-core

Legacy style attributes moved to CSS

Remaining inline style attributes were removed from HTML5 code, which prevented custom
plug-ins from overriding the presentation of the corresponding elements, including:

• <line-through> and <overline> elements

• syntax diagrams

• long quote citations

• Boolean states

These changes move the default presentation rules to CSS to allow users to override these styles
in custom stylesheets. The output is visually equivalent to the results generated by previous
toolkit versions.

Important: In publishing environments that do not use the default common CSS files, these
styles may need to be implemented in custom stylesheets.

XSL variable msgprefix removed

The msgprefix variable (“DOTX”) has been deprecated since DITA-OT 2.3 and is now
removed from DITA-OT 3.6. For more information, see Migrating to release 2.3 on page 221.

Migrating to release 3.5

DITA-OT 3.5 includes support for additional input resources, an alternative subcommand
syntax for the dita command, and an initial preview of features for the latest draft of the
upcoming DITA 2.0 standard.

Note: This topic provides a summary of changes in DITA-OT 3.5 that may require
modifications to custom stylesheets or plug-ins. For more information on changes in this
release, see the DITA-OT 3.5 Release Notes.

New subcommands

The dita command line interface has been refactored to support subcommands for common
operations.

209

https://github.com/dita-ot/org.dita.html5.dublin-core/
https://www.dita-ot.org/plugins
https://www.dita-ot.org/3.5/release-notes/

Extending DITA-OT with plug-ins

Important: The new subcommands supersede the deprecated X-Toolkit–style single-hyphen
keyword variants (such as -install), and the corresponding GNU-style option keywords
preceded by two hyphens (such as --install).

dita install Installs or reloads plug-ins (replaces dita --
install)

dita plugins Prints a list of installed plug-ins (replaces
dita --plugins)

dita transtypes Prints a list of installed transformation
types, or output formats (replaces dita --
transtypes)

dita uninstall Removes and deletes a plug-in (replaces dita
--uninstall)

dita version Prints version information and exits (replaces
dita --version)

Tip: The double-hyphen option syntax has been retained for backwards compatibility, so if
you use commands like dita --install in scripts, they will still work, but you may want
to migrate your scripts to the new subcommand syntax.

Legacy constructs removed

DITA-OT 3.5 no longer includes the following legacy properties, list files, and targets, which
were deprecated in previous releases. These constructs were no longer used in recent releases,
and have now been removed entirely.

The following Ant targets have been removed from the pre-processing pipeline:

• mappull and mappull-check, which were used to pull metadata (such as navtitle) into
the map from referenced topics prior to DITA-OT 2.2 (merged with move-meta-entries)

• conref-check, deprecated since 2.3

• coderef, which was used to resolve code references in input files prior to 2.3 (merged with
topic-fragment)

• copy-subsidiary and copy-subsidiary-check, which were used to copy files to
the temporary directory prior to 2.1

Recent DITA-OT versions provide alternative mechanisms to achieve the same results, such as
the <ditafileset> element to select resources in the temporary directory.

Along with the obsolete targets, the following Ant properties have been removed:

• canditopicsfile

• canditopicslist

• conreffile

• conreflist

• conreftargetsfile

• conreftargetslist

210

Creating custom plug-ins

• copytosourcefile

• copytosourcelist

• fullditamapandtopicfile

• fullditamapandtopiclist

• fullditamapfile

• fullditamaplist

• fullditatopicfile

• fullditatopiclist

• hrefditatopicfile

• hrefditatopiclist

• hreftargetsfile

• hreftargetslist

• htmlfile

• htmllist

• imagefile

• imagelist

• outditafilesfile

• outditafileslist

• resourceonlyfile

• resourceonlylist

• subjectschemefile

• subjectschemelist

• subtargetsfile

• subtargetslist

• user.input.file.listfile

• user.input.file

The following obsolete list files are no longer generated in the temporary directory:

• canditopics.list

• conref.list

• conreftargets.list

• copytosource.list

• fullditamap.list

• fullditamapandtopic.list

• fullditatopic.list

• hrefditatopic.list

• hreftargets.list

• html.list

• image.list

• outditafiles.list

• resourceonly.list

• subjectscheme.list

• subtargets.list

211

Extending DITA-OT with plug-ins

• user.input.file.list

• usr.input.file.list

For example, if your plug-in previously used the fullditatopicfile to select resources in
the temporary directory like this:

1 <xslt·basedir="${dita.temp.dir}"
2 ······destdir="${output.dir}"
3 ······includesfile="${dita.temp.dir}${file.separator}${fullditatopicfile}"
4 ······style="${args.xsl}">
5 ··[...]
6 </xslt>

With DITA-OT 2.4 or newer, use the <ditafileset> element instead:

1 <xslt·basedir="${dita.temp.dir}"
2 ······destdir="${output.dir}"
3 ······style="${args.xsl}">
4 ··<ditafileset·format="dita"·processingRole="normal"/>
5 ··[...]
6 </xslt>

If your plug-in previously used the user.input.file.listfile to process the start map
like this:

1 <xslt·[...]
2 ······includesfile="${dita.temp.dir}${file.separator}${user.input.file.listfile}"/>

Use the <ditafileset> element as follows:

1 <xslt·[...]·>
2 ··<ditafileset·input="true"·format="ditamap"/>
3 </xslt>

Adjusting output file names

Two new parameters can be used to dynamically adjust the names and locations of output files in
transformations that use the map-first pre-processing routine (preprocess2).

These parameters can be passed on the command line, or included in a custom plug-in via
<property> elements in an Ant script as described in Adjusting file names in map-first pre-
processing on page 171.

• Use result.rewrite-rule.class to rewrite filenames with a Java class that
implements the org.dita.dost.module.RewriteRule interface

• Use result.rewrite-rule.xsl to rewrite via an XSLT stylesheet

212

Creating custom plug-ins

Migrating to release 3.4

DITA-OT 3.4 includes an official Docker container image, a separate plug-in for PDF
indexing, a new option to skip HTML5 cover pages, and initial support for project files
that allow you to define multiple deliverables in advance, and publish them all at once.

Note: This topic provides a summary of changes in DITA-OT 3.4 that may require
modifications to custom stylesheets or plug-ins. For more information on changes in this
release, see the DITA-OT 3.4 Release Notes.

New indexing plug-in

DITA-OT 3.4 extracts the PDF indexing code to a separate org.dita.index plug-in, and
adds a new depend.org.dita.pdf2.index extension point that can be used to add custom
index processing targets to PDF output.

The built-in index processing has been disabled and deprecated. If you
have overridden index processing via the transform.topic2fo target
in the past, you can set the new org.dita.index.skip property to
yes and re-enable the transform.topic2fo.index target with
<feature extension="depend.org.dita.pdf2.index"
value="transform.topic2fo.index"/> in your plug-in configuration.

Table 5: New plug-ins

Plug-in Source code location

org.dita.index https://github.com/dita-ot/org.dita.index

Legacy plug-ins removed

DITA-OT 3.4 no longer includes the following legacy transformation plug-ins in the default
distribution:

Table 6: Legacy plug-ins

Plug-in Source code location

TocJS https://github.com/dita-ot/com.sophos.tocjs

troff https://github.com/dita-ot/org.dita.troff

Note: If necessary, legacy plug-ins may be re-installed from earlier DITA-OT distributions,
but they are no longer actively maintained or supported by the core toolkit committers. The
source code is available on GitHub for anyone interested in maintaining the plug-ins for use
with future toolkit versions.

213

https://www.dita-ot.org/3.4/release-notes/
https://github.com/dita-ot/org.dita.index
https://github.com/dita-ot/com.sophos.tocjs
https://github.com/dita-ot/org.dita.troff

Extending DITA-OT with plug-ins

To re-install the plug-in(s) from the plug-in registry at dita-ot.org/plugins, run the following
command(s):

dita --install=com.sophos.tocjs
dita --install=org.dita.troff

Migrating to release 3.3

DITA-OT 3.3 includes new attribute sets for HTML5 customization, support for custom
integration processing, rotated table cells in PDF output, and hazard statements in HTML
output.

Note: This topic provides a summary of changes in DITA-OT 3.3 that may require
modifications to custom stylesheets or plug-ins. For more information on changes in this
release, see the DITA-OT 3.3 Release Notes.

Secure connections to the plug-in registry

Attention: To ensure data integrity during the plug-in installation process, Transport Layer
Security (TLS) will soon be required to access the plug-in registry. If you are using DITA-
OT 3.3, 3.2, or 3.2.1 and are unable to upgrade to the latest version, modify the registry
key in the config/configuration.properties file to switch the URI schema to
https://, so the entry reads https://plugins.dita-ot.org/.

For more information, see Chapter 20 Adding plug-ins via the registry on page 141.

Base plug-in files moved to plugins directory

Various XSLT files and other resources have been moved from the root of the DITA-OT
installation directory to the base plug-in directory plugins/org.dita.base.

Attention: There is no longer an xsl/ directory in the installation root.

If your plug-ins use the plugin URI scheme as recommended in the Plug-in coding conventions
on page 151, this change should not require any modifications to custom plug-in code:

In XSLT, use the plugin URI scheme in <xsl:import> and <xsl:include>
to reference files in other plug-ins.

Instead of:

<xsl:import href="../../org.dita.base/xsl/common/output-message.xsl"/>

use:

<xsl:import href="plugin:org.dita.base:xsl/common/output-message.xsl"/>

214

https://www.dita-ot.org/plugins
https://www.dita-ot.org/3.3/release-notes/

Creating custom plug-ins

As with the plug-in directory property in Ant, this allows plug-ins to resolve to
the correct directory even when a plug-in moves to a new location. The plug-in is
referenced using the syntax plugin:plugin-id:path/within/plugin/
file.xsl.

Relocated catalog

Along with the other base plug-in files, the catalog-dita.xml file has been moved
from the root of the DITA-OT installation directory to plugins/org.dita.base.
External systems that rely on this catalog should be updated with the new location. Ant
scripts and DITA-OT plug-ins should use the plug-in directory property to refer to the file as
${dita.plugin.org.dita.base.dir}/catalog-dita.xml. A placeholder with a
<nextCatalog> entry is provided in the original location for backwards compatibility, but this
file may be removed in an upcoming release.

<nextCatalog catalog="plugins/org.dita.base/catalog-dita.xml"/>

Figure 62: Legacy catalog placeholder content

Deprecated properties

The templates key in configuration properties has been deprecated in favor of the
<template> element in plugin.xml.

New attribute sets for HTML5 customization

A series of new attribute sets has been added to the default HTML5 transformation to facilitate
customization with additional ARIA roles, attributes, or CSS classes. Attribute sets are provided
for:

• article

• banner

• footer

• main

• navigation

• toc

If you have previously copied XSL templates (or template modes) to custom plug-ins only to
add classes required by web frameworks such as Bootstrap or Foundation (or your company
CSS), you may be able to simplify your customizations by using the new attribute sets instead of
overriding the default templates.

Migrating to release 3.2

DITA-OT 3.2 includes new command-line options, support for RELAX NG parsing
and validation, preliminary processing for the XDITA authoring format proposed for

215

Extending DITA-OT with plug-ins

Lightweight DITA, and a plug-in registry that makes it easier to discover and install new
plug-ins.

Note: This topic provides a summary of changes in DITA-OT 3.2 that may require
modifications to custom stylesheets or plug-ins. For more information on changes in this
release, see the DITA-OT 3.2 Release Notes.

Deprecated targets

The configuration-jar Ant target used during the plug-in integration process has been
deprecated and may be removed in an upcoming release. This was previously used to package
additional configuration files and properties into lib/dost-configuration.jar, but
recent versions of DITA-OT include the config directory in the classpath for this purpose, so
the configuration JAR is no longer necessary.

Secure connections to the plug-in registry

Attention: To ensure data integrity during the plug-in installation process, Transport Layer
Security (TLS) will soon be required to access the plug-in registry. If you are using DITA-OT
3.2 or 3.2.1 and are unable to upgrade to the latest version, modify the registry key in the
config/configuration.properties file to switch the URI schema to https://,
so the entry reads https://plugins.dita-ot.org/.

For more information, see Chapter 20 Adding plug-ins via the registry on page 141.

Migrating to release 3.1

DITA-OT 3.1 includes support for DITA 1.3 SVG domain elements, enhanced
<codeblock> processing, and incremental improvements to Lightweight DITA
processing and PDF output.

Note: This topic provides a summary of changes in DITA-OT 3.1 that may require
modifications to custom stylesheets or plug-ins. For more information on changes in this
release, see the DITA-OT 3.1 Release Notes.

Custom if/unless attributes in Ant scripts

Ant scripts for DITA-OT builds now make use of @if:set and @unless:set attributes
in the Ant namespace, which can be used to control whether parameters are passed to XSLT
modules. These attributes replace custom implementations of if and unless logic introduced
before Ant had this capability.

If your plug-ins include Ant scripts that use @if or @unless on <param> elements that pass
XSLT parameters, add the following namespace attributes to the root project:

• xmlns:if="ant:if"

216

https://www.dita-ot.org/3.2/release-notes/
https://www.dita-ot.org/3.1/release-notes/

Creating custom plug-ins

• xmlns:unless="ant:unless"

In custom Ant build files and in any files that supply parameters to existing DITA-OT
XSLT modules, replace all occurrences of if="property" on <param> elements with
if:set="property" (and unless # unless:set respectively).

1 <root·xmlns:if="ant:if"·xmlns:unless="ant:unless">
2 ··<param·name="antProperty"·expression="${antProperty}"
3 ·········if:set="antProperty"/>
4 </root>

For more information on passing parameters to existing XSLT steps, see XSLT-parameter
extension points on page 336.

Deprecated properties

As of DITA-OT 3.1, the Java class path is managed automatically, meaning you do not (and
should not) use explicit references to Java class paths in your build scripts. In particular, the old
dost.class.path property has been deprecated and should not be used. If you are migrating
older plug-ins that manage their class path directly, you should remove any explicit class path
configuration. If your plug-in was not already using the dita.conductor.lib.import
extension point to integrate its JAR dependencies you must add it.

The effective DITA-OT class path is the combination of the JAR files in the main lib/ directory
and the plug-in-contributed JARs, which are listed in config/env.sh. The env.sh file is
updated automatically when plug-ins are installed or removed.

The xml.catalog.files property has been deprecated and should not be used. Replace any
such references with the xml.catalog.path instead.

PDF – Enabling line numbers in codeblocks

The codeblock.generate-line-number template mode default has been changed
to check for the show-line-numbers keyword in the @outputclass attribute. Earlier
versions of DITA-OT required custom PDF plug-ins to override the template mode to return
true().

Migrating to release 3.0

DITA-OT 3.0 adds support for Markdown, normalized DITA output, and the alternative
authoring formats proposed for Lightweight DITA. The map-first pre-processing
approach provides a modern alternative to the default preprocess operation.

Note: This topic provides a summary of changes in DITA-OT 3.0 that may require
modifications to custom stylesheets or plug-ins. For more information on changes in this
release, see the DITA-OT 3.0 Release Notes.

Upgrade stylesheets to XSLT 2.0

217

https://www.dita-ot.org/3.0/release-notes/

Extending DITA-OT with plug-ins

The Saxon project has announced plans to remove XSLT 1.0 support from the Saxon-HE library
that ships with DITA-OT:

…we’re dropping XSLT 1.0 backwards compatibility mode from Saxon-HE, and hope
to eliminate it entirely in due course.

https://www.xml.com/news/release-saxon-98/

DITA-OT 3.0 and 3.0.1 included Saxon-HE 9.8.0.5, which rejects XSLT stylesheets that
specify version="1.0". Plug-ins with XSLT templates specifying version 1.0 will fail with
the message “XSLT 1.0 compatibility mode is not available in this
configuration.”

To resolve this issue, change any occurrences of <xsl:stylesheet version="1.0"> in
custom plug-in stylesheets to at least <xsl:stylesheet version="2.0">.

Tip: DITA-OT 3.0.2 includes Saxon-HE 9.8.0.7, which restores XSLT 1.0 backwards-
compatibility mode, but the DITA Open Toolkit project recommends upgrading all stylesheets
to XSLT 2.0 to ensure plug-ins remain compatible with future versions of DITA-OT and
Saxon-HE.

Legacy plug-ins removed

DITA-OT 3.0 no longer includes the following legacy transformation plug-ins in the default
distribution:

Table 7: Legacy plug-ins

Plug-in Source code location

JavaHelp https://github.com/dita-ot/org.dita.javahelp

Note: If necessary, legacy plug-ins may be re-installed from earlier DITA-OT distributions,
but they are no longer actively maintained or supported by the core toolkit committers. The
source code is available on GitHub for anyone interested in maintaining the plug-ins for use
with future toolkit versions.

To re-install the JavaHelp plug-in, run the following command:

dita --install=https://github.com/dita-ot/org.dita.javahelp/archive/2.5.zip

Map-first pre-processing

DITA-OT provides a map-first pre-processing option as an alternative to the default
preprocess operation. The method, which was introduced in DITA-OT 2.5 as an experimental
feature, has since been improved and is ready for use in production scenarios. Map-first pre-
processing provides the same functionality as the default preprocess, but takes a different
approach.

The internal extension points that run before or after individual steps in the original
preprocess pipeline (preprocess.*.pre/preprocess.*.post) are not available

218

https://www.xml.com/news/release-saxon-98/
https://github.com/dita-ot/org.dita.javahelp

Creating custom plug-ins

in the newer map-first pre-processing pipeline (preprocess2), which is used in the PDF and
HTML Help transformations as of DITA-OT 3.0, and in HTML5 and Normalized DITA output
as of DITA-OT 4.2.

Tip: See Map-first pre-processing on page 290 for information on how to use (or test) map-
first pre-processing, or revert to the legacy preprocess target.

New ant.import extension point

A new extension point has been added to make it easier to add new targets to the Ant processing
pipeline.

Earlier versions of DITA-OT use the dita.conductor.target.relative to call a
wrapper file with a dummy task that imports the Ant project file. This approach is still supported
for backwards compatibility, but the simpler ant.import approach should be used for all new
customizations.

Tip: See Adding a new target to the Ant build process on page 158 for details.

Migrating to release 2.5

In DITA-OT 2.5, several frequently-overridden legacy style settings were removed from
the default PDF plug-in. A separate plug-in can be used to restore the original settings.

Note: This topic provides a summary of changes in DITA-OT 2.5 that may require
modifications to custom stylesheets or plug-ins. For more information on changes in this
release, see the DITA-OT 2.5 Release Notes.

Deprecated logging parameters

The args.debug and args.logdir properties have been deprecated and will be removed in
an upcoming version of DITA-OT.

• To enable debug logging, use dita --debug.

Attention: Debug logging requires additional resources and can slow down the build
process, so it should only be enabled when further details are required to diagnose
problems.

• To write the log to a file, use dita --logfile=file or ant -l file and specify the
path to the log file.

Unless an absolute path is specified, the value will be interpreted relative to the current
directory.

Default PDF style improvements

219

https://www.dita-ot.org/2.5/release-notes/

Extending DITA-OT with plug-ins

Several legacy styles have been modified or removed in the default PDF plug-in
org.dita.pdf2, including the following:

• In task topics with only a single step, the step is now rendered as a simple block (rather than as
a list item without a label).

• Table containers now inherit the initial indentation (start-indent) from the parent
elements.

• Borders and indentation have been removed from <example> elements.

• Links are no longer italicized.

• Titles for related link lists have been standardized to use the common.title attribute set
(which applies the sans-serif font-family) and bold font weight.

• Several remaining occurrences of left/right borders, margins, padding, and text alignment now
use the corresponding start/end equivalents to better support right-to-left languages.

External plug-in for legacy PDF styling

If you have a custom PDF plug-in that explicitly depends on the previous default settings for the
aforementioned styles, the org.dita.pdf2.legacy plug-in can be used to restore the pre–
2.5 styles.

Plug-in Source code location

org.dita.pdf2.legacy https://github.com/dita-ot/org.dita.pdf2.legacy

To install the legacy PDF plug-in, run the following command:

dita --install=https://github.com/dita-ot/org.dita.pdf2.legacy/archive/2.5.zip

Attention: Only install the legacy PDF plug-in if you have a custom PDF plug-in that
requires the pre–2.5 styles. If your plug-in was designed for DITA-OT 2.4 and does not
override these settings, there is no need to install the legacy PDF plug-in.

Migrating to release 2.4

In DITA-OT 2.4, the HTML5 transformation was refactored as an independent plug-in
that no longer depends on the XHTML plug-in.

Note: This topic provides a summary of changes in DITA-OT 2.4 that may require
modifications to custom stylesheets or plug-ins. For more information on changes in this
release, see the DITA-OT 2.4 Release Notes.

HTML5

• The HTML5 transformation introduced in release 2.0 as part of the XHTML plug-in was moved
to a separate HTML5 plug-in in release 2.2, but that version of the HTML5 transformation still
depended on the XHTML plug-in for certain common processing.

220

https://github.com/dita-ot/org.dita.pdf2.legacy
https://www.dita-ot.org/2.4/release-notes/

Creating custom plug-ins

In release 2.4, all dependencies between HTML5 and XHTML have been removed to ensure that
HTML5 processing can be further refactored in the future without affecting XHTML output,
or other HTML-based transformations such as eclipsehelp, htmlhelp or javahelp.

Customizations that extended the previous HTML5 output under the XHTML plug-in (as
provided in releases 2.0 and 2.1) or the HTML5 plug-in that shipped with release 2.2 will need
to be refactored to build on the new HTML5 plug-in.

• Note title processing was revised in release 2.2 to include a common note__title class
for note elements of all types. The legacy {$type}title classes (such as .notetitle,
.cautiontitle, .tiptitle, etc.) were included in release 2.2 for backwards
compatibility, but have now been removed in release 2.4.

Stylesheets that apply formatting overrides to note titles should be revised to replace the
deprecated class selectors with the equivalent descendant selectors, for example:

• .note_note .note__title

• .note_caution .note__title

• .note_tip .note__title

Legacy plug-ins removed

DITA-OT 2.4 no longer includes the following legacy transformation plug-ins in the default
distribution:

Table 8: Legacy plug-ins

Plug-in Source code location

DocBook https://github.com/dita-ot/org.dita.docbook

Eclipse Content https://github.com/dita-ot/org.dita.eclipsecontent

OpenDocument Text https://github.com/dita-ot/org.dita.odt

Word RTF https://github.com/dita-ot/org.dita.wordrtf

Note: If necessary, legacy plug-ins may be re-installed from earlier DITA-OT distributions,
but they are no longer actively maintained or supported by the core toolkit committers. The
source code is available on GitHub for anyone interested in maintaining the plug-ins for use
with future toolkit versions.

Migrating to release 2.3

In DITA-OT 2.3, HTML5 table processing has been refactored to use HTML5 best
practices and improved CSS properties. In PDF output, table heads and key columns
no longer include shading, and unused localization variables have been deprecated. The
template for generated error messages has been updated to use a single id variable that
contains the entire message ID.

221

https://github.com/dita-ot/org.dita.docbook
https://github.com/dita-ot/org.dita.eclipsecontent
https://github.com/dita-ot/org.dita.odt
https://github.com/dita-ot/org.dita.wordrtf

Extending DITA-OT with plug-ins

Note: This topic provides a summary of changes in DITA-OT 2.3 that may require
modifications to custom stylesheets or plug-ins. For more information on changes in this
release, see the DITA-OT 2.3 Release Notes.

HTML5

The HTML5 table processing has been refactored to use valid HTML5 markup, HTML5 best
practices, and better CSS properties for styling. BEM-style CSS classes are now generated with
the name of the containing element, the name of the attribute, and the value of the attribute.

Common CSS files are now generated using separate modules for each DITA domain,
implemented as Sass partials to better support extensions with CSS frameworks, custom plug-ins
and future toolkit versions.

HTML-based formats

The XSLT tm-area named template, which used to toggle rendering of trademark symbols in
US English and Asian languages (Japanese, Korean, and both Chinese) but ignore them in all
other languages, has been deprecated. Trademark symbols are now rendered uniformly for all
languages and the template will be removed in an upcoming release.

In previous releases, short descriptions in <abstract> elements were rendered as division
elements (<div>), rather than paragraphs (<p>). Processing has been revised to ensure that
short descriptions are consistently rendered as paragraphs, regardless of whether they appear in
<abstract> elements. Users who have previously implemented custom CSS rules to style
div.shortdesc like paragraphs should be able to remove these rules.

PDF

The antiquewhite background color has been removed from table heads and key column
contents in <simpletable> and <properties> tables to synchronize presentation with
<choicetable> and provide a more uniform customization baseline between PDF output and
HTML-based formats.

PDF: The I18N Java and XSLT processing code has been merged into single task. This
eliminated the need for a stage3.fo file in the temporary directory; instead, topic.fo
is generated directly from stage2.fo. If custom plug-ins were implemented to handle
stage3.fo, they would need to be updated.

Localization variables that are no longer used in PDF processing have been deprecated and will
be removed in an upcoming release. PDF customization plug-ins that make use of these variables
should plan to refactor accordingly:

• Back button title

• Contents button title

• Forward button title

• Index button title

• Index multiple entries separator

• Main page button title

222

https://www.dita-ot.org/2.3/release-notes/
https://en.bem.info/methodology/
http://sass-lang.com

Creating custom plug-ins

• Next page button title

• Online help prefix

• Online Help Search Method And

• Online Help Search Method Field

• Online Help Search Method Or

• Previous page button title

• Search button title

• Search Case Sensitive Switch

• Search Excluded Stop Words Message

• Search Highlight Switch

• Search index button title

• Search index field title

• Search index next button title

• Search Search Give No Results Message

• Search Search in Progress Message

• Search Stopped Message

• Search text button title

• Search text field title

• Search title

• Search Whole Words Switch

• Untitled section

Note: Most of these variables were never used by the PDF process, and most were not
supported (or localized) for any language other than English.

Deprecated properties and targets

The following Ant properties have been deprecated:

• conreffile

The following pre-processing targets have been deprecated:

• conref-check

• coderef

Pre-processing

The order of the chunk and move-meta-entries pre-processing stages has been switched
so that chunk comes first. This ensures that metadata is properly pulled or pushed into the
chunked version of DITA topics.

Generating error messages

Previously, the XSLT output-message named template for generating error messages
combined a global msgprefix variable and two parameters to determine the actual message ID.
This function has been updated to use a single id variable that contains the entire message ID.

223

Extending DITA-OT with plug-ins

Plug-ins that make use of the output-message function should be updated to use the single
id variable, as in:

1 <xsl:call-template·name="output-message">
2 ··<xsl:with-param·name="id"·select="'FULLMESSAGENUMBER'"/>
3 ··<xsl:with-param·name="msgparams">optional-message-parameters</xsl:with-param>
4 </xsl:call-template>

The msgprefix XSL variable (“DOTX”) has been deprecated and will be removed in an
upcoming release.

Migrating to release 2.2

In DITA-OT 2.2, the HTML5 transformation was refactored as its own plug-in
and separate plug-ins were created for each of the rendering engine-specific PDF
transformations.

Note: This topic provides a summary of changes in DITA-OT 2.2 that may require
modifications to custom stylesheets or plug-ins. For more information on changes in this
release, see the DITA-OT 2.2 Release Notes.

HTML5

The HTML5 transformation introduced in release 2.0 as part of the XHTML plug-in has been
moved to a separate HTML5 plug-in. Customizations that extended the previous HTML5 output
under the XHTML plug-in will probably need to be refactored on the new HTML5 plug-in.

Note title processing has been revised to use a common note__title class for note elements
of all types. The legacy {$type}title classes (such as .notetitle, .cautiontitle,
.tiptitle, etc.) are included for backwards compatibility, but are deprecated and will be
removed in an upcoming release. Stylesheets that apply formatting overrides to note titles
should be revised to replace the deprecated class selectors with the equivalent descendant
selectors, for example .note_note .note__title, .note_caution .note__title,
.note_tip .note__title, etc.

PDF

Processing specific to Apache FOP, Antenna House Formatter, and RenderX XEP has
been separated into separate plug-ins for each of those rendering engines. Customizations
that extended this processing might need to extend the new org.dita.pdf2.fop,
org.dita.pdf2.axf, or org.dita.pdf2.xep plug-ins.

PDF customizations that are not specific to a rendering engine can continue to extend the
org.dita.pdf2 plug-in as before.

The default format for page numbers in the table of contents (<toc>) was switched to roman
to align with <preface> and ensure consistent numbering styles for all <frontmatter>
components in <bookmap>. This prevents numbering from switching back and forth between
styles in bookmaps where the Preface follows the table of contents. Earlier versions of DITA-OT
produced numbering sequences like 1,2,3,4,v,vi,7,8 in this use case.

224

https://www.dita-ot.org/2.2/release-notes/

Creating custom plug-ins

Deprecated properties

The following Ant properties have been deprecated:

• user.input.file, use user.input.file.uri instead to specify the input file
system path

• user.input.dir, use user.input.dir.uri instead to specify the input directory
system path

• InputMapDir, use InputMapDir.uri instead to specify the input map directory system
path

Migrating to release 2.1

In DITA-OT 2.1, the insertVariable template was deprecated for PDF
transformations and should be replaced with the getVariable template. Various
dita.out.map.* targets have been deprecated in favor of updated dita.map.*
equivalents.

Note: This topic provides a summary of changes in DITA-OT 2.1 that may require
modifications to custom stylesheets or plug-ins. For more information on changes in this
release, see the DITA-OT 2.1 Release Notes.

The customFileUtils code used to handle input and output in earlier versions of DITA-OT
has been replaced with the Apache Commons IO utilities library.

Deprecated targets

The following build targets have been deprecated and will be removed in an upcoming release:

• The help target that includes a reference to the current DITA-OT version during the build
process.

Pre-processing

The following Ant properties and generated list files have been deprecated:

• imagefile property and image.list file

• htmlfile property and html.list file

The following pre-processing targets and extension points have been deprecated:

• The copy-subsidiary target used to copy subsidiary files

• The copy-subsidiary-check target used to check for subsidiary files

• The depend.preprocess.copy-subsidiary.pre extension point used to insert an
Ant target before the copy-subsidiary step in the pre-processing stage.

A newdita.parser extension point has been added to allow plug-ins to contribute a custom
parser for DITA files. If a custom DITA parser is defined, the pre-processing routines will use it
during the gen-list and debug-filter stages to output DITA XML.

225

https://www.dita-ot.org/2.1/release-notes/
http://commons.apache.org/proper/commons-io/

Extending DITA-OT with plug-ins

PDF

The following template has been deprecated:

• insertVariable, use getVariable instead

Calls to that template will result in warnings in the build log.

To update your plug-in, make the following changes:

1 <xsl:call-template·name="insertVariablegetVariable">
2 ··<xsl:with-param·name="theVariableIDid"·select="var-id"/>
3 ··<xsl:with-param·name="theParametersparams">
4 ····params
5 ··</xsl:with-param>
6 </xsl:call-template>

HTML-based output formats

The keydefs variable and the following XSL parameters have been deprecated:

• KEYREF-FILE

• displaytext

• keys

• target

The following template modes have been deprecated:

• pull-in-title

• common-processing-phrase-within-link

XHTML

The dita.out.map.xhtml.toc target has been deprecated and should be replaced with the
updated dita.map.xhtml.toc equivalent.

Keydef processing has been removed from the XHTML rendering code. Keys are now resolved
in one pre-processing step, whereas in earlier versions of DITA-OT, the XHTML code returned
to the keydef.xml file to look up targets for phrase elements and pull in text when needed.

This change affects non-linking elements that can’t take @href attributes, such as <ph>,
<keyword>, <cite>, <dt>, <term>, and <indexterm> (when $INDEXSHOW is active).

HTMLHelp

The dita.out.map.htmlhelp.* targets have been deprecated and should be replaced with
the updated dita.map.htmlhelp.* equivalents:

• dita.out.map.htmlhelp.hhp, use dita.map.htmlhelp.hhp instead

• dita.out.map.htmlhelp.hhc, use dita.map.htmlhelp.hhc instead

• dita.out.map.htmlhelp.hhk, use dita.map.htmlhelp.hhk instead

JavaHelp

226

Creating custom plug-ins

The dita.out.map.javahelp.* targets have been deprecated and should be replaced with
the updated dita.map.javahelp.* equivalents:

• dita.out.map.javahelp.toc, use dita.map.javahelp.toc instead

• dita.out.map.javahelp.map, use dita.map.javahelp.map instead

• dita.out.map.javahelp.set, use dita.map.javahelp.set instead

• dita.out.map.javahelp.index, use dita.map.javahelp.index instead

OpenDocument Text

Support for the args.odt.img.embed parameter has been removed from OpenDocument
Text transformations. The previous default behavior was to embed images as Base64-encoded
text, but editors do not use this as a default. Instead, office packages such as LibreOffice will
convert embedded images into linked images on opening and saving an ODT file.

Migrating to release 2.0

In DITA-OT 2.0, XSLT templates were converted to XSLT 2.0, variable typing was
implemented, and some older templates were refactored or removed. In addition, the
dita command simplifies distribution of plugins by allowing installation from a URL.

Note: This topic provides a summary of changes in DITA-OT 2.0 that may require
modifications to custom stylesheets or plug-ins. For more information on changes in this
release, see the DITA-OT 2.0 Release Notes.

All transformations — variable typing

XSLT stylesheets were converted to XSLT 2.0. With that change, variable types were also
implemented. Plug-ins that change template variable values will need to make the following
changes:

• Declare the same types defined in the default templates with @as.

• Ensure that the generated values conform to the declared type.

For example:

<xsl:variable name="urltest">
<xsl:variable name="urltest" as="xs:boolean">

All transformations — refactoring

Much of the toolkit code was refactored for release 2.0. Customization changes that were based
on a specific template in a previous version of the toolkit might not work because the modified
template is no longer used. If this is the case, the changes will need to be reimplemented based on
the new XSLT templates.

227

https://www.dita-ot.org/2.0/readme/changes/rel2.0.html

Extending DITA-OT with plug-ins

HTML5

A new HTML5 transformation type has been added. Customizations that previously modified the
XHTML output to generate valid HTML5 should still work, but basing your customization on
the new transformation type might simplify the customization and reduce the work required to
maintain compatibility with future versions of the toolkit.

Note: The HTML5 transformation was refactored with release 2.2. Before basing your
customization on the changes in release 2.0, consider whether you might want to move to
release 2.2 instead. See Migrating to release 2.2 on page 224.

Plug-in installation and distribution

Plug-ins can now be installed or uninstalled from a ZIP archive using the new dita command.
Plug-ins can also be installed from a referenced URL. See Chapter 13 Arguments and options for
the dita command on page 75.

Migrating to release 1.8

In DITA-OT 1.8, certain stylesheets were moved to plug-in specific folders and various
deprecated Ant properties, XSLT stylesheets, parameters and modes were removed from
the XHTML, PDF and ODT transformations.

Stylesheets for the following transformation types have moved to plug-in specific folders:

• eclipsehelp

• htmlhelp

• javahelp

• odt

• xhtml

Pre-processing

The following deprecated Ant properties have been removed:

• dita.script.dir, use ${dita.plugin.id.dir} instead

• dita.resource.dir, use ${dita.plugin.org.dita.base.dir}/resource
instead

• dita.empty

• args.message.file

XHTML

XSLT Java extension ImgUtils has been removed from stylesheets and been replaced with
pre-processing module ImageMetadataModule. The old ImgUtils Java classes are still
included in the build.

PDF

228

Creating custom plug-ins

The following deprecated XSLT stylesheets have been removed:

• artwork-preprocessor.xsl

• otdita2fo_frontend.xsl

The following deprecated XSLT templates have been removed:

• insertVariable.old

The following deprecated XSLT modes have been removed:

• layout-masters-processing

• toc-prefix-text, use tocPrefix mode instead

• toc-topic-text, use tocText mode instead

Link generation has been simplified by removing deprecated arguments in favor of
args.rellinks. The following deprecated Ant properties have been removed:

• args.fo.include.rellinks

The following XSLT parameters have been removed:

• antArgsIncludeRelatedLinks

• disableRelatedLinks

A call to a named template pullPrologIndexTerms.end-range has been added to
processTopic* templates to handle topic wide index ranges.

Legacy PDF

The following deprecated XSLT stylesheets have been removed:

• dita2fo-shell_template.xsl

• topic2fo-shell.xsl

ODT

Link generation has been simplified by removing deprecated arguments in favor of
args.rellinks. The following deprecated Ant properties have been removed:

• args.odt.include.rellinks

The following XSLT parameters have been added:

• include.rellinks

The following XSLT parameters have been removed:

• disableRelatedLinks

Migrating to release 1.7

In DITA-OT 1.7, a new pre-processing step implements flagging for HTML-based output
formats. PDF processing was corrected with regard to shortdesc handling, and a new
XSLT template mode was introduced for HTML TOC processing. Several stylesheets

229

Extending DITA-OT with plug-ins

were moved to plug-in specific folders and deprecated properties and XSLT variables
were removed.

A new job status file .job.xml has been introduced and replaces dita.list and
dita.xml.properties as the normative source for job status. If you have custom
processing which modifies the job properties, you should change your code to modify
.job.xml instead.

Support for the following deprecated properties has been removed:

• dita.input

• dita.input.dirname

• dita.extname

Stylesheets for the following transformation types have moved to plug-in specific folders:

• docbook

• eclipsecontent

• troff

• wordrtf

If custom plug-ins have hard coded paths to these stylesheets, update references to use either
plugin URIs in xsl:import instructions or use dita.plugin.* Ant properties.

The integration process has been changed to use strict mode by default. For old plug-ins which
are not valid, lax processing mode can still be used.

Plug-ins that use the MessageUtils Java class must use getInstance method to access the
MessageUtils instance, as getMessage methods have been changed to instance methods.

Pre-processing

The pre-processing Ant dependency chain has been cleaned up. Tasks no longer depend on the
previous task in the default chain, but rather the whole preprocess dependency chain is defined by
the preprocess task.

HTML

Core TOC generation has been moved to a separate XSLT stylesheet xsl/map2htmtoc/
map2htmlImpl.xsl and the new templates use the mode toc. Plug-ins which override
HTML TOC processing should change the map processing templates to toc mode.

HTML and extended transformation types

Flagging logic has been pulled out of the core X/HTML code and moved to a preprocess
step. This significantly simplifies and optimizes the X/HTML code, while making flagging
logic available to any other transformation type. The new preprocess step implements all
flagging logic; for each active flag, it adds a DITA-OT specific hint into the intermediate topics
(implemented as a specialization of the DITA <foreign> element). As part of this change, all
flagging-related templates in the XHTML code (such as start-flagit and gen-style) are deprecated.

If you override the X/HTML transforms, you may need to update your overrides to use the new
flagging logic. In most cases this just means deleting calls to the deprecated templates; in some

230

Creating custom plug-ins

cases, the calls can be replaced with 2 lines to process flags in new places. You should compare
your override to the updated XHTML code and update as needed. See XHTML migration for
flagging updates in DITA-OT 1.7 on page 231 for details.

Plug-ins that provide support for new transforms need to ensure that they properly support the
DITA <foreign> element, which should be ignored by default; if so, this change will have no
immediate impact. Support for flagging new transformation types may be more easily added
based on this update, because there is no need to re-implement flagging logic, but this is not
required. See Flagging (flag-module) on page 301 for details on how to add flagging
support.

PDF

The following deprecated XSLT variables have been removed:

• page-margin-left

• page-margin-right

XSLT stylesheets have been split to separate specialization topic code and new xsl:import
instructions have been added to topic2fo.xsl. Plug-ins which define their own shell
stylesheet should be revised to import all the required stylesheet modules.

PDF processing used to replace topic shortdesc with map shortdesc, but this behavior was
incorrect and was removed to comply with the DITA specification.

A new #note-separator variable string was added to facilitate customization.

XHTML migration for flagging updates in DITA-OT 1.7

This topic is primarily of interest to developers with XHTML transform overrides written
prior to DITA-OT 1.7. Due to significant changes in the flagging process with the 1.7
release, some changes may be needed to make overrides work properly with DITAVAL-
based flagging. The new design is significantly simpler than the old design; in many
cases, migration will consist of deleting old code that is no longer needed.

Which XHTML overrides need to migrate?

If your override does not contain any code related to DITAVAL flagging, then there is nothing to
migrate.

If your builds do not make use of DITAVAL-based flagging, but call the deprecated flagging
templates, then you should override but there is little urgency. You will not see any difference in
the output, but those templates will be removed in a future release.

If you do make use of DITAVAL-based flagging, try using your override with 1.7. Check the
elements you override:

1. In some cases flags may be doubled. This will be the case if you call routines such as
start-flagit.

2. In some cases flags may be removed. This will be the case if you call shortcut routines such as
revtext or revblock.

3. In other cases, flags may still appear properly, in which case migration is less urgent.

231

Extending DITA-OT with plug-ins

For any override that needs migration, please see the instructions that follow.

Deprecated templates in DITA-OT 1.7

All of the old DITAVAL-based templates are deprecated in DITA-OT 1.7. If your overrides
include any of the following templates, they should be migrated for the new release; in many
cases the templates below will not have any effect on your output, but all instances should be
migrated.

• The gen-style template used to add CSS styling

• The start-flagit and end-flagit templates used to generate image flags based on
property attributes like @audience

• The start-revflag and end-revflag templates, used to generate images for active
revisions

• Shortcut templates that group these templates into a single call, such as:

• start-flags-and-rev and end-flags-and-rev, used to combine flags and
revisions into one call

• revblock and revtext, both used to output start revisions, element content, and end
revisions

• The modes outputContentsWithFlags and
outputContentsWithFlagsAndStyle, both used to combine processing for
property/revision flags with content processing

• All other templates that make use of the $flagrules variable, which is no longer used in
any of the DITA-OT 1.7 code

• All templates within flag.xsl that were called from the templates listed above

• Element processing handled with mode="elementname-fmt", such as mode="ul-fmt" for
processing unordered lists and mode="section-fmt" for sections.

What replaces the templates?

The new flagging design described in the preprocess design section now adds literal copies of
relevant DITAVAL elements, along with CSS-based flagging information, into the relevant
section of the topic. This allows most flags to be processed in document order; in addition,
there is never a need to read the DITAVAL, interpret CSS, or evaluate flagging logic. The
htmlflag.xsl file contains a few rules to match and process the start/end flags; in most cases,
all code to explicitly process flags can be deleted.

For example, the common logic for most element rules before DITA-OT 1.7 could be boiled
down to the following:

1. Match element

2. Create flagrules variable by reading DITAVAL for active flags

3. Output start tag such as <div> or

4. Call commonattributes and ID processing

5. Call gen-style with $flagrules, to create DITAVAL-based CSS

6. Call start-flagit with $flagrules, to create start flag images

7. Call start-revflag with $flagrules, to create start revision images

8. Output contents

232

Creating custom plug-ins

9. Call end-revflag with $flagrules, to create end revision images

10. Call end-flagit with $flagrules, to create end flag images

11. Output end tag such as </div> or

In DITA-OT 1.7, style and images are typically handled with XSLT fallthrough processing. This
removes virtually all special flag coding from element rules, because flags are already part of the
document and processed in document order.

The sample above is reduced to:

1. Match element

2. Output start tag such as <div> or

3. Call commonattributes and ID processing

4. Output contents

5. Output end tag such as </div> or

Migrating gen-style named template

Calls to the gen-style template should be deleted. There is no need to replace this call for
most elements.

The gen-style template was designed to read a DITAVAL file, find active style-based
flagging (such as colored or bold text), and add it to the generated @style attribute in HTML.

With DITA-OT 1.7, the style is calculated in the pre-process flagging module. The
result is created as @outputclass on a <ditaval-startprop> sub-element. The
commonattributes template now includes a line to process that value; the result is that
for every element that calls commonattributes, DITAVAL style will be processed
when needed. Because virtually every element includes a call to this common template,
there is little chance that your override needs to explicitly process the style. The new line in
commonattributes that handles the style is:

<xsl:apply-templates select="*[contains(@class,' ditaot-d/ditaval-startprop ')]/
@outputclass" mode="add-ditaval-style"/>

Migrating start-flagit, start-revflag, end-flagit, and end-flagit named
templates

Calls to these templates fall into two general groups.

If the flow of your element rule is to create a start tag like <div>, start-flagit/start-
revflag, process contents, end-revflag/end-flagit, end tag — you just need to delete
the calls to these templates. Flags will be generated simply by processing the element contents in
document order.

If the flow of your element rule processes flags outside of the normal document-order. There
are generally two reasons this is done. The first case is for elements like , where flags
must appear before the in order to create valid XHTML. The second is for elements like
<section>, where start flags are created, followed by the title or some generated text, element
contents, and finally end flags. In either of these cases, support for processing flags in document
order is disabled, so they must be explicitly processed out-of-line.

233

Extending DITA-OT with plug-ins

This is done with the following two lines (one for start flag/revision, one for end flag/revision):

• Create starting flag and revision images:

<xsl:apply-templates select="*[contains(@class,' ditaot-d/ditaval-startprop ')]"
 mode="out-of-line"/>

• Create ending flag and revision images:

<xsl:apply-templates select="*[contains(@class,' ditaot-d/ditaval-endprop ')]"
 mode="out-of-line"/>

For example, the following lines are used in DITA-OT 1.7 to process the element
(replacing the 29 lines used in DITA-OT 1.6):

 1 <xsl:template·match="*[contains(@class,'·topic/ul·')]">
 2 ··<xsl:apply-templates·select="*[contains(@class,'·ditaot-d/ditaval-
startprop·')]"·mode="out-of-line"/>
 3 ··<xsl:call-template·name="setaname"/>
 4 ··
 5 ····<xsl:call-template·name="commonattributes"/>
 6 ····<xsl:apply-templates·select="@compact"/>
 7 ····<xsl:call-template·name="setid"/>
 8 ····<xsl:apply-templates/>
 9 ··
10 ··<xsl:apply-templates·select="*[contains(@class,'·ditaot-d/ditaval-
endprop·')]"·mode="out-of-line"/>
11 ··<xsl:value-of·select="$newline"/>
12 </xsl:template>

Migrating start-flags-and-rev and end-flags-and-rev

• start-flags-and-rev is equivalent to calling start-flagit followed by start-
revflag; it should be migrated as in the previous section.

• end-flags-and-rev is equivalent to calling end-revflag followed by end-flagit;
it should be migrated as in the previous section.

Migrating revblock and revtext

Calls to these two templates can be replaced with a simple call to <xsl:apply-templates/
>.

Migrating modes outputContentsWithFlags and
outputContentsWithFlagsAndStyle

Processing an element with either of these modes can be replaced with a simple call to
<xsl:apply-templates/>.

Migrating mode="elementname-fmt"

Prior to DITA-OT 1.7, many elements were processed with the following logic:

Match element
 Set variable to determine if revisions are active and $DRAFT
 is on
 If active
 create division with rev style
 process element with mode="elementname-fmt"
 end division

234

Creating custom plug-ins

 Else
 process element with mode="elementname-fmt"

Match element with mode="elementname-fmt"
 Process as needed

Beginning with DITA-OT 1.7, styling from revisions is handled automatically with the
commonattributes template. This means there is no need for the extra testing, or the
indirection to mode="elementname-fmt". These templates are deprecated, and element
processing will move into the main element rule. Overrides that include this indirection may
remove it; overrides should also be sure to match the default rule, rather than matching with
mode="elementname-fmt".

Migrating to release 1.6

In DITA-OT 1.6, various demo plug-ins were removed along with many deprecated
properties, targets, templates and modes. The PDF2 transformation no longer supports
the beta version of DITA from IBM, the "bkinfo" demo plug-in, or layout-
masters.xml configuration.

Support for the old DITAVAL format (used before OASIS added DITAVAL to the standard in
2007) has been removed.

The demo folder has been deprecated and the following plug-ins have been moved to the
plugins folder:

old path new path

demo/dita11 plugins/org.dita.specialization.dita11

demo/dita132 plugins/
org.dita.specialization.dita132

demo/eclipsemap plugins/
org.dita.specialization.eclipsemap

demo/fo plugins/org.dita.pdf2

demo/tocjs plugins/com.sophos.tocjs

demo/h2d plugins/h2d

demo/legacypdf plugins/legacypdf

The remaining plug-ins in the demo folder have been moved to a separate repository at
github.com/dita-ot/ext-plugins.

The deprecated property dita.input.valfile should be replaced with the new argument
property args.filter.

The dita-preprocess target has been removed and dependencies should be replaced with a
target sequence build-init, preprocess.

Support for the args.message.file argument has been removed as message configuration
has become static configuration.

235

https://github.com/dita-ot/ext-plugins

Extending DITA-OT with plug-ins

The workdir processing instruction has been deprecated in favor of workdir-uri. The only
difference between the two processing instructions is that workdir-uri contains a URI instead
of a system path.

Pre-processing

The following deprecated templates and modes have been removed in topic pull stylesheets:

• inherit

• get-stuff

• verify-type-attribute

• classval

• getshortdesc

• getlinktext

• blocktext

• figtext

• tabletext

• litext

• fntext

• dlentrytext

• firstclass

• invalid-list-item

• xref

PDF2

The following deprecated items are no longer supported in the PDF transform:

• Support for the beta version of DITA, available from IBM before the OASIS standard was
created in 2005.

• Support for the "bkinfo" demo plug-in, used to support book metadata before OASIS created
the BookMap format in 2007.

• Support for layout-masters.xml configuration. Plug-ins should use the
createDefaultLayoutMasters template instead.

The following extension-points have been added:

• dita.conductor.pdf2.param to add XSLT parameters to XSL FO transformation.

Custom PDF2 shell stylesheets need to be revised to not include separate IBM and OASIS DITA
stylesheets. The *_1.0.xsl stylesheets have been removed and their imports must be removed
from shell stylesheets.

The following template modes have been deprecated:

• toc-prefix-text

• toc-topic-text

The following named templates have been removed:

• processTopic

236

Creating custom plug-ins

• createMiniToc

• processTopicTitle

• createTopicAttrsName

• processConcept

• processReference

• getTitle

• placeNoteContent

• placeImage

• processUnknowType

• insertReferenceTitle

• buildRelationships

• processTask

The main FO generation process now relies on the merging process to rewrite duplicate IDs.
The default merging process did this already in previous releases, but now also custom merging
processes must fulfill the duplicate ID rewrite requirement.

XHTML

The following named templates have been deprecated:

• make-index-ref

The following deprecated templates have been removed:

• revblock-deprecated

• revstyle-deprecated

• start-revision-flag-deprecated

• end-revision-flag-deprecated

• concept-links

• task-links

• reference-links

• relinfo-links

• sort-links-by-role

• create-links

• add-linking-attributes

• add-link-target-attribute

• add-user-link-attributes

The removed templates have been replaced by other templates in earlier releases and plug-ins
should be changed to use the new templates.

ODT

The following deprecated templates have been removed:

• revblock-deprecated

• revstyle-deprecated

• start-revision-flag-deprecated

237

Extending DITA-OT with plug-ins

• end-revision-flag-deprecated

The removed templates have been replaced by other templates in earlier releases and plug-ins
should be changed to use the new templates.

Migrating to release 1.5.4

DITA-OT 1.5.4 adds new extension points to configure behavior based on file
extensions, declare print transformation types and add mappings to the PDF
configuration catalog file. PDF output supports mirrored page layout and uses new font
family definitions. Support for several new languages was added for PDF and XHTML
output.

Configuration properties file changes

In previous versions, the lib/configuration.properties file was
generated by the integration process. Integration has been changed to generate lib/
org.dita.dost.platform/plugin.properties and the role of the old lib/
configuration.properties has been changed to contain defaults and configuration
options, such as default language.

The dita.plugin.org.dita.*.dir properties have been changed to point to the DITA-
OT base directory.

To allow access to configuration files, the lib directory needs to be added to the Java classpath.

New plug-in extension points

New plug-in extension points have been added allow configuring DITA-OT behavior based on
file extensions.

Extension point Description Default values

dita.topic.extension DITA topic .dita, .xml

dita.map.extensions DITA map .ditamap

dita.html.extensions HTML file .html, .htm

dita.resource.extensions Resource file .pdf, .swf

Both HTML and resource file extensions are used to determine if a file in source is copied to
output.

A new plug-in extension point has been added to declare transformation types as print types.

Extension point Description

dita.transtype.print Declare transformation type as a print type.

The print_transtypes property in integrator.properties has been deprecated in
favor of dita.transtype.print.

238

Creating custom plug-ins

Plugin URI scheme

Support for the plugin URI scheme has been added to XSLT stylesheets. Plug-ins can refer to
files in other plug-ins without hard-coding relative paths, for example:

<xsl:import href="plugin:org.dita.pdf2:xsl/fo/topic2fo_1.0.xsl"/>

XHTML

Support for the following languages has been added:

• Indonesian

• Kazakh

• Malay

PDF

Support for mirrored page layout was added. The default is the unmirrored layout. The following
XSLT configuration variables have been deprecated:

• page-margin-left

• page-margin-right

The following variables should be used instead to control page margins:

• page-margin-outside

• page-margin-inside

The args.bookmap-order property has been added to control how front and back matter are
processed in bookmaps. The default is to reorder the frontmatter content as in previous releases.

A new extension point has been added to add mappings to the PDF configuration catalog file.

Extension point Description

org.dita.pdf2.catalog.relative Configuration catalog includes.

Support for the following languages has been added:

• Finnish

• Hebrew

• Romanian

• Russian

• Swedish

PDF processing no longer copies images or generates XSL FO to output directory.
Instead, the temporary directory is used for all temporary files and source images are read
directly from source directory. The legacy processing model can be enabled by setting
org.dita.pdf2.use-out-temp to true in configuration properties; support for the
legacy processing model may be removed in future releases.

Support for FrameMaker index syntax has been disabled by default. To enable FrameMaker
index syntax, set org.dita.pdf2.index.frame-markup to true in configuration
properties.

239

Extending DITA-OT with plug-ins

A configuration option has been added to disable internationalization (I18N) font
processing and use stylesheet-defined fonts. To disable I18N font processing, set
org.dita.pdf2.i18n.enabled to false in configuration properties.

The XSLT parameters customizationDir and fileProfilePrefix have been removed
in favor of the customizationDir.url parameter.

A new shell stylesheet has been added for FOP and other shell stylesheets have also been revised.
Plug-ins which have their own shell stylesheets for PDF processing should make sure all required
stylesheets are imported.

Font family definitions in stylesheets have been changed from Sans, Serif, and Monospaced to
sans-serif, serif, and monospace, respectively. The I18N font processing still uses the old logical
names and aliases are used to map the new names to old ones.

240

Rebuilding the DITA-OT documentation

Chapter 22 Rebuilding the DITA-OT documentation

When you add or remove plug-ins, you can rebuild the documentation to update the
information on the extension points, messages, and parameters that are available in your
environment.

About this task

DITA-OT ships with a Gradle build script that enables you to rebuild the toolkit documentation.
The build script reads the toolkit’s plug-in configuration and automatically regenerates topics and
properties file templates based on the extension points, messages, and parameters provided by the
installed plug-ins.

Attention: If you have installed new plug-ins, you may need to add the corresponding
generated topics to the DITA maps to include the new information in the output.

Procedure

1. Change to the docsrc/ subdirectory of the DITA-OT installation.

2. Run one of the following commands.

• On Linux and macOS:

./gradlew target

• On Windows:

gradlew.bat target

The target parameter is optional and specifies a transformation type. It takes the following
values:

• html

• htmlhelp

• pdf

If you do not specify a target, HTML5 and PDF output is generated.

241

https://gradle.org

Extending DITA-OT with plug-ins

242

Part 6 Error messages and troubleshooting

This part contains information about problems that you might encounter and how to
resolve them.

Chapter 23 Logging.. 245
Chapter 24 Enabling debug mode.. 249
Chapter 25 DITA-OT error messages...251
Chapter 26 Other error messages..277
Chapter 27 Command line help.. 279
Chapter 28 Increasing Java memory...281
Chapter 29 Speeding up builds...283
Chapter 30 Configuring proxies..285

243

Error messages and troubleshooting

244

Logging build information

Chapter 23 Logging build information

When you run DITA-OT, key information is logged on the screen. This information can
also be written to a log file. If you encounter a problem, you can analyze this information
to determine the source of the problem and then take action to resolve it.

The logging behavior varies depending on whether you use the dita command or Ant to invoke
a toolkit build.

dita command By default, only warning and error messages
are written to the screen.

• For more information, enable verbose
logging with dita --verbose.

Verbose logging prints additional
information to the console, including
directory settings, effective values for
Ant properties, input/output files, and
informational messages to assist in
troubleshooting.

• To enable debug logging, use dita --
debug.

Debug logging prints considerably
more additional information. The debug
log includes all information from the
verbose log, plus details on Java classes,
additional Ant properties and overrides, pre-
processing filters, parameters, and stages,
and the complete build sequence.

Attention: Debug logging requires
additional resources and can slow down
the build process, so it should only be
enabled when further details are required
to diagnose problems.

• To write the log to a file, use dita --
logfile=file and specify the path to
the log file.

Unless an absolute path is specified, the
value will be interpreted relative to the
current directory.

Ant By default, status information is written to the
screen. If you issue the -l parameter, the build
runs silently and the information is written to

245

Error messages and troubleshooting

a log file with the name and location that you
specified.

Using other Ant loggers

You also can use other Ant loggers; see Listeners & Loggers in the Ant documentation for more
information.

For example, you can use the AnsiColorLogger to colorize the messages written on the screen.

dita command To use a custom Ant logger with the dita
command, add the logger to the ANT_ARGS
environment variable by calling the following
command before calling the dita command:

export ANT_ARGS="-logger
 org.apache.tools.ant.listener.AnsiColorLogger"

Now you will get colorized messages when the
dita command runs.

Tip: Environment variables can also be set
permanently. See How do I set or change the
PATH system variable? for information on
how to set the PATH environment variable.
You can set the ANT_ARGS environment
variable in the same way.

Ant If you prefer to launch DITA-OT directly
from Ant, you can also add the logger to the
ANT_ARGS environment variable, as explained
above. You can also set the logger with the -
logger parameter when calling Ant.

ant -logger
 org.apache.tools.ant.listener.AnsiColorLogger

FOP debug logging

In PDF processing with Apache™ FOP, DITA-OT uses the Simple Logging Facade for Java
(SLF4J) for better control and formatting of FOP log messages. To reduce noise on the console,
all FOP messages are set to the Info level and hidden by default.

To enable debug logging, modify the config/logback.xml file or add your own
logback.xml to the classpath with a higher priority to override the default settings. For more
information, see the Logback configuration documentation.

246

https://ant.apache.org/manual/listeners.html
https://www.java.com/en/download/help/path.xml
https://www.java.com/en/download/help/path.xml
https://en.wikipedia.org/wiki/PATH_(variable)
https://logback.qos.ch/manual/configuration.html

Logging build information

Attention: Enabling FOP debug logging will dramatically increase the size of generated log
files.

247

Error messages and troubleshooting

248

Enabling debug mode

Chapter 24 Enabling debug mode

Debug logging prints considerably more additional information. The debug log includes
all information from the verbose log, plus details on Java classes, additional Ant
properties and overrides, pre-processing filters, parameters, and stages, and the complete
build sequence. The debug log can help you determine the root cause of a problem.

Procedure

From the command prompt, add the following parameters:

Application Parameters

dita command --debug, -debug, or -d

Ant -v -Dargs.debug=yes

You also can add a <property> element to an Ant target in your build file, for example:

<property name="args.debug" value="yes"/>

Attention: Debug logging requires additional resources and can slow down the build process,
so it should only be enabled when further details are required to diagnose problems.

249

Error messages and troubleshooting

250

DITA-OT error messages

Chapter 25 DITA-OT error messages

This topic lists each error message generated by the toolkit and provides additional
information that might be helpful in understanding and resolving the error condition. If
your toolkit installation includes custom plug-ins that define additional messages, you
can add to this list by rebuilding the DITA-OT documentation.

Each message ID is composed of a message prefix, a message number, and a letter that indicates
the severity level (I, W, E, or F).

The toolkit uses the following severity scale:

Info (I) Informational messages highlight the progress
of transformation and call attention to
conditions of which you should be aware. For
example, draft comments are enabled and will
be rendered in the output.

Warning (W) The toolkit encountered a problem that should
be corrected. Processing will continue, but the
output might not be as expected.

Error (E) The toolkit encountered a more severe
problem, and the output is affected. For
example, some content is missing or invalid, or
the content is not rendered in the output

Fatal (F) The toolkit encountered a severe condition,
processing stopped, and no output is generated.

Plug-ins may be used to add additional messages to the toolkit; for more information, see Chapter
22 Rebuilding the DITA-OT documentation on page 241.

Table 9: DITA-OT error messages

Message ID Severity Message text Additional details

DOTA001F Fatal '%1' is not a recognized
transformation type. Supported
transformation types are
dita, eclipsehelp, html5,
htmlhelp, markdown,
markdown_gitbook,
markdown_github, pdf, pdf2,
validate, xhtml.

Default transformation types that ship
with the toolkit include dita, eclipsehelp,
html5, htmlhelp, markdown variants,
pdf (or pdf2), and xhtml. Additional
transformation types may be available if
toolkit plug-ins are installed.

DOTA002F Fatal Input not specified, or
specified using the wrong
parameter.

The input parameter was not specified,
so there is no DITA or DITAMAP file
to transform. Ensure the parameter is
set properly; see DITA-OT common
parameters (args.input) if you are unsure
how to specify the input file.

251

Error messages and troubleshooting

Message ID Severity Message text Additional details

DOTA003F Fatal Cannot find the user-specified
XSLT stylesheet '%1'.

An alternate stylesheet was specified to
run in place of the default XSLT output
process, but that stylesheet could not be
loaded. Correct the parameter value to
specify a valid stylesheet.

DOTA004F Fatal Invalid file name extension
'%1'. The '.dita' and '.xml'
file name extensions are
supported for DITA topics.

This optional parameter is used to set an
extension for DITA topic documents in
the temporary processing directory. Only
"dita", ".dita", "xml", or ".xml" are allowed.

DOTA006W Warning Absolute paths on the local
file system are not supported
for the CSSPATH parameter.
Use a relative path or full URI
instead.

If the CSSPATH uses an absolute
path, it should be one that can still be
accessed after the files are moved to
another system (such as http://
www.example.org/). Absolute paths on
the local file system will be broken if the
content is moved to a new system.

DOTA007E Error Cannot find the running-footer
file '%1'. Check the value to
ensure it is specified correctly.

The running footer file, which contains
content to be added to the bottom of each
XHTML output topic, cannot be located
or read. This is usually caused by a typo
in the parameter value. You should also
make sure the value is not specified with
file: as a prefix.

DOTA008E Error Cannot find the running-
header file '%1'. Check the
value to ensure it is specified
correctly.

The running header file, which contains
content to be added to the top of each
XHTML output topic, cannot be located
or read. This is usually caused by a typo
in the parameter value. You should also
make sure the value is not specified with
file: as a prefix.

DOTA009E Error Cannot find the specified
heading file '%1'. Check the
value to ensure it is specified
correctly.

The running heading file, which contains
content to be added to the <head>
section of each HTML output topic,
cannot be located or read. This is usually
caused by a typo in the parameter value.
You should also ensure that the value is
not specified with file: as a prefix.

DOTA011W Warning The '%1' argument is
deprecated. This argument is
no longer supported.

DOTA012W Warning The '%1' argument is
deprecated. Use the '%2'
argument instead.

DOTA013F Fatal Cannot find the specified
DITAVAL file '%1'.

DOTA014W Warning The @%1 attribute is
deprecated. Use the @%2
attribute instead.

DOTA015F Fatal The internal property '%1' may
not be set directly. Use the '%2'
property instead.

252

DITA-OT error messages

Message ID Severity Message text Additional details

DOTA066F Fatal Cannot find the user-specified
XSLT stylesheet '%1'.

An alternate stylesheet was specified to
run in place of the default XSL-FO output
process, but that stylesheet could not be
loaded. Correct the parameter value to
specify a valid stylesheet.

DOTA067W Warning Ignoring <index-see> '%1'
inside parent index entry
'%2' because the parent term
contains term children.

According to the OASIS DITA
Specification, the <index-see>
element should be ignored if the
parent <indexterm> contains other
<indexterm> children.

DOTA068W Warning Ignoring <index-see-also>
'%1' inside parent index entry
'%2' because the parent term
contains term children.

According to the OASIS DITA
Specification, the <index-see-
also> element should be ignored if the
parent <indexterm> contains other
<indexterm> children.

DOTA069F Fatal The input resource '%1' cannot
be located or read. Make sure
'%1' exists and that you have
permission to access it.

Make sure the input file path and file
name were entered correctly.

DOTA069W Warning Target '%1' is deprecated.
Remove references to this
target from your custom XSLT
or plug-ins.

DOTJ005F Fatal Failed to create new instance
for '%1'. Make sure '%1' exists
and that you have permission
to access it.

DOTJ007E Error Duplicate condition in filter
file for rule '%1'. Using the first
condition found.

DOTJ007I Info Duplicate condition in filter
file for rule '%1'. Using the first
condition found.

DOTJ007W Warning Duplicate condition in filter
file for rule '%1'. Using the first
condition found.

DOTJ009E Error Cannot overwrite the '%1'
resource with '%2'. The
modified result may not be
available to the following
transformation steps. Check
if the resource is locked by
some other application during
the transformation process.

The transformation was unable to create
certain files; results may not be as
expected.

253

Error messages and troubleshooting

Message ID Severity Message text Additional details

DOTJ012F Fatal Failed to parse the input
resource '%1'.

This message may indicate an invalid
input (such as a PDF accidentally
specified as input rather than a DITA map
file), an input file that uses elements that
are not allowed, or a DITA file that has
errors and cannot be parsed as XML.
You could also be using a specialized
DITA document type that needs external
plug-ins to be parsed correctly. The
message issued by the XML parser
should provide additional information to
help diagnose the cause.

DOTJ013E Error Failed to parse the referenced
resource '%1'.

This message may indicate a reference
to an invalid file (such as a PDF or
unknown XML file referenced as if it was
DITA), a file that uses elements that are
not allowed, or a DITA file that has errors
and cannot be parsed as XML. You
could also be using a specialized DITA
document type that needs external plug-
ins to be parsed correctly. The message
issued by the XML parser should provide
additional information to help diagnose
the cause.

DOTJ014W Warning Found an <indexterm>
element with no content.
Setting the term to '***'.

An empty <indexterm> element was
found, and will appear in the index as
***. This index term should be removed
from the source.

DOTJ018I Info The '%1' log file was
written to the '%2' directory.
Any messages from the
transformation process are
available in the log; additional
details about each message
may be available in the
documentation.

DOTJ020W Warning The '%2' plug-in cannot be
loaded because it requires at
least one plug-in in '%1'. Make
sure all prerequisite plug-ins
are properly installed.

This message appears when one plug-
in requires another to function correctly,
but the required dependency is not found.
The installed plug-in will be ignored.

DOTJ021E Error No output generated for
'%1' because all content has
been filtered out by DITAVAL
'exclude' conditions, or the
resource is not valid DITA.
Check the '%1' resource and
the DITAVAL file to see if this
is the intended result.

254

DITA-OT error messages

Message ID Severity Message text Additional details

DOTJ021W Warning No output generated for
'%1' because all content has
been filtered out by DITAVAL
'exclude' conditions, or the
resource is not valid DITA.
Check the '%1' resource and
the DITAVAL file to see if this
is the intended result.

This may appear if filter conditions on the
root element of a topic cause the entire
topic to be filtered out. To remove this
message, move any filter conditions to
the topic reference to prevent the build
from accessing this resource.

DOTJ022F Fatal Failed to parse the input
resource '%1' because all of
its content has been filtered
out. This can happen if the
resource has filter conditions
on the root element, and
a DITAVAL file excludes
all content based on those
conditions.

To remove this message, update the
filtering conditions in the input file or the
DITAVAL file to permit access to the
content, or move filter conditions to the
topic reference to prevent the build from
accessing this resource.

DOTJ023E Error The specified image file '%1' is
not available. It is not included
in the output. Make sure '%1'
exists and that you have
permission to access it.

Check whether the image exists in the
source location or already exists in the
output directory.

DOTJ025E Error The input to the 'topic merge'
process cannot be found.
Correct any earlier errors and
try the build again, or see the
documentation for additional
details.

This message should only appear in the
following cases:

• Earlier errors in the build prevented
this step of the transformation from
running; correct any errors and try the
build again.

• An Ant build or plug-in is directly
calling the toolkit’s topic merge
module, and is doing so improperly;
in this case the Ant build or plug-in
needs to be fixed.

• In the past, problems have been
encountered when calling this module
with an absolute path; this should no
longer be an issue, but may be fixed
in older releases by updating the Ant
build or plug-in.

DOTJ026E Error The 'topic merge' process
did not generate any output.
Correct any earlier errors and
try the build again, or see the
documentation for additional
details.

This message should only appear if an
Ant build or plug-in is directly calling the
toolkit’s topic merge module, or if earlier
errors resulted in problems with some of
the content. If the topic merge module
is called correctly, then this indicates a
program error that should be reported to
the DITA-OT development team via the
GitHub issues tracker.

255

https://github.com/dita-ot/dita-ot/issues

Error messages and troubleshooting

Message ID Severity Message text Additional details

DOTJ028E Error No @format attribute was
found on a reference to the
'%1' resource, which does
not appear to be DITA. If this
is not a DITA resource, set
the @format attribute to an
appropriate value; otherwise
set the @format attribute to
'dita'.

When referencing a non-DITA file, the
@format attribute should indicate the
type of file referenced (such as html
for HTML topics or pdf for PDF files).
Otherwise, the toolkit may attempt to
parse the referenced document as a
DITA topic.

DOTJ029I Info No @domains attribute was
found for the <%1> element.
This generally indicates that
the grammar files (such as
DTDs or schemas) were not
developed properly according
to the DITA specification.

The @domains attribute is used in
specialized DITA documents to help
determine which domain elements are
legal. This message will only appear if
a DITA specialization was not defined
properly.

DOTJ030I Info No @class attribute was
found for the <%1> element.
Processing as an unknown or
non-DITA element.

All specialized DITA elements must
define a @class attribute to provide
ancestry information. This message will
only appear if a specialized DITA element
did not define a @class attribute, or if
non-DITA elements are included in a
DITA context.

DOTJ031I Info No rule for '%1' was found in
the DITAVAL file. Using the
default action, or a parent prop
action if specified. To remove
this message, specify a rule
for '%1' in the DITAVAL file.

This informational message is intended to
help you catch filter conditions that may
have been specified improperly; if the
value is correct, no action is needed.

DOTJ033E Error No valid content found in
the referenced resource '%1'
during chunk processing.
Specify an existing and valid
topic for the topic reference.

DOTJ034F Fatal Failed to parse the input
resource '%1' (the content
is not valid). If '%1' does not
have a DOCTYPE declaration,
make sure that all @class
attributes are present.

DITA processing is based on @class
attributes defined for every element.
Usually these are defaulted in the DTD
or schema; if no DTD or schema is used,
the @class attributes must be explicitly
included in the map or topic.

DOTJ035F Fatal The '%1' resource is outside
the scope of the input
directory. To lower the severity
level, use the Ant parameter
'outer.control', and set the
value to 'warn' or 'quiet'.
Otherwise, move the '%1'
resource to the directory
where the input map or topic is
stored.

This message appears when a topic
is outside the scope of the map;
for example, if the main input map
references "../other-directory/
some.dita". The result would cause
an output file to be created outside of the
output directory. See DITA-OT common
parameters (outer.control and
generate.copy.outer) for details.

256

DITA-OT error messages

Message ID Severity Message text Additional details

DOTJ036W Warning The '%1' resource is outside
the scope of the input
directory.

This message appears when a topic
is outside the scope of the map;
for example, if the main input map
references "../other-directory/
some.dita". The result would cause
an output file to be created outside of
the output directory. If you do not want
to see the warning message, use the
outer.control parameter and set the
value to quiet. Otherwise, move the
referenced file into the input directory.
See DITA-OT common parameters
(outer.control and generate.copy.outer)
for details.

DOTJ037W Warning The XML schema and DTD
validation function of the
parser is turned off. For correct
processing, make sure the
input is normalized DITA with
@class attributes included.

DITA processing is based on @class
attributes defined for every element.
Usually these are defaulted in the DTD
or schema; if no DTD or schema is used,
the @class attributes must be explicitly
included in the map or topic.

DOTJ038E Error The <%1> element is
specialized from unrecognized
metadata. Make sure that the
<%1> element is specialized
from an existing metadata
element in the core DITA
vocabulary.

This appears to indicate an error in
creating specialized metadata elements.
Check that the document type you are
using is complete and complies with DITA
specialization rules.

DOTJ039E Error There is no target specified
for the conref push action
'pushafter'. Specify a @conref
target and set the 'mark'
@conaction on the element
that precedes the current
element.

See Conref Push in the DITA
specification for details on expected
syntax for this function.

DOTJ040E Error An element uses the conref
push action 'pushreplace',
but no @conref attribute is
defined. Specify a @conref
target with the ID of the
content you want to replace.

See Conref Push in the DITA
specification for details on expected
syntax for this function.

DOTJ041E Error The @conref attribute value
'%1' uses invalid syntax. The
value must contain '#' followed
by a topic or map ID, optionally
followed by '/elemID' for a sub-
topic element.

The @conref attribute must be a URI
reference to a DITA element. See
URI-based addressing in the DITA
specification for details on the expected
syntax.

DOTJ042E Error Two elements both use conref
push to replace the target '%1'.
Delete one of the duplicate
'pushreplace' actions.

The conref push function was used to
replace a single element with two or
more alternatives. Only one element
may directly replace another using
conref push. For more information about
the conref pushreplace action, see
The @conaction attribute in the DITA
specification.

257

http://docs.oasis-open.org/dita/dita/v1.3/os/part1-base/langRef/attributes/theconactionattribute.html#theconactionattribute
http://docs.oasis-open.org/dita/dita/v1.3/os/part1-base/langRef/attributes/theconactionattribute.html#theconactionattribute
http://docs.oasis-open.org/dita/dita/v1.3/os/part1-base/archSpec/base/uri-based-addressing.html#uri-based-addressing
http://docs.oasis-open.org/dita/dita/v1.3/errata01/os/complete/part1-base/langRef/attributes/theconactionattribute.html

Error messages and troubleshooting

Message ID Severity Message text Additional details

DOTJ043W Warning The conref push function is
trying to replace an element
<%1> that does not exist in
the '%2' resource. Update the
reference to refer to a valid
target.

The target for a conref push action does
not exist; make sure that the syntax
is correct and that the target exists.
See URI-based addressing in the DITA
specification for details on the expected
syntax. If the syntax is correct, it is
possible that the target was filtered out of
your build using a DITAVAL file.

DOTJ044W Warning There is a redundant conref
push action 'pushbefore'.
Make sure that 'mark' and
'pushbefore' occur in pairs.

For details on the expected syntax for this
function, see The @conaction attribute
in the DITA specification.

DOTJ045I Info The key '%1' is defined more
than once in the same map.

This informational message is intended
to help you catch catch duplicate key
definitions; if the keys are defined as
expected, no action is needed.

DOTJ046E Error The @conkeyref attribute
value '%1' cannot be resolved
because it does not contain a
key or the key is not defined.
Using the @conref attribute as
fallback if it exists.

See the conkeyref definition for details on
expected syntax and usage.

DOTJ047I Info Unable to find key definition
for key reference '%1' in root
scope. Using the @href
attribute as fallback if it exists.

This message is intended to help you
locate incorrectly specified keys; if the
key was specified correctly, this message
may be ignored.

DOTJ048I Info Unable to find key definition
for key reference '%1' in scope
'%2'. Using the @href attribute
as fallback if it exists.

DOTJ049W Warning The @%1 attribute value '%3'
on the <%2> element does
not comply with the specified
subject scheme. According to
the subject scheme map, the
following values are valid for
the @%1 attribute: '%4'.

A DITA Subject Scheme map was used
to limit values that are available to the
specified attribute. Correct the attribute
value so that it uses one of the allowed
values.

DOTJ050W Warning Found an <index-see> or
<index-see-also> reference to
the term '%1', but that term is
not defined in the index.

The Eclipse index will contain a value
such as "See also otherEntry", but
otherEntry does not exist in this index.
The index reference will be broken
unless this plug-in is always loaded into
Eclipse with another plug-in that defines
otherEntry as an index term.

258

http://docs.oasis-open.org/dita/dita/v1.3/os/part1-base/archSpec/base/uri-based-addressing.html#uri-based-addressing
http://docs.oasis-open.org/dita/dita/v1.3/errata01/os/complete/part1-base/langRef/attributes/theconactionattribute.html
http://docs.oasis-open.org/dita/dita/v1.3/os/part1-base/langRef/attributes/theconkeyrefattribute.html#theconkeyrefattribute

DITA-OT error messages

Message ID Severity Message text Additional details

DOTJ051E Error Unable to load target for
coderef '%1'. Make sure '%1'
exists and that you have
permission to access it.

The target for a <coderef> element,
which specifies an external text-based
file, could not be located or loaded. Make
sure the reference is correct.

For security reasons, references to code
samples outside of the scope of the map
directory are not supported by default,
as this could allow a reference to access
and display any restricted or hidden file
on the system. If you are certain that
the path is valid and the file should be
loaded, the current workaround is to set
a parameter to allow these references.
See DITA-OT common parameters
(outer.control and generate.copy.outer)
for details.

DOTJ052E Error Unsupported code reference
charset '%1'. See the
documentation for supported
character set values on the
@format attribute.

DITA-OT supports a special syntax on
<coderef> elements to specify the
character set of the target document. See
Extended codeblock processing on page
318 for details on the expected syntax.

DOTJ053W Warning The input resource '%1' is not
a valid DITA filename. Check
'%1' to see if it is correct. The
'.dita' and '.xml' file name
extensions are supported for
DITA topics.

By default, DITA-OT supports the .dita
and .xml file name extensions for
DITA topics, as mandated by the DITA
specification. Make sure your topics use
one of these extensions, or configure the
toolkit to allow additional extensions.

DOTJ054E Error Unable to parse invalid @%1
attribute value '%2'.

This message indicates that the @href
value specified in %1 does not use proper
URI syntax. This may occur when @href
includes characters that should be
escaped (such as the space character,
which should be %20 when in a URI). In
strict processing mode this will cause a
build failure; in other processing modes
the build will continue using the value in
%2.

DOTJ055E Error Invalid key name '%1'.
Key names consist of URI
characters and may not
contain '{', '}', '[', ']', '/', '#', '?' or
whitespace.

DOTJ056E Error Invalid @xml:lang attribute
value '%1'. Check the correct
value for the target language.

DOTJ057E Error The @id attribute value '%1' is
not unique within the topic that
contains it.

DOTJ058E Error Both the @%1 and @%2
attributes are defined. A single
element may not contain both
generalized and specialized
values for the same attribute.

259

Error messages and troubleshooting

Message ID Severity Message text Additional details

DOTJ059E Error Invalid key scope name '%1'.

DOTJ060W Warning The '%1' key is used in a
@conkeyref attribute but it is
not bound to a DITA topic or
map. Cannot resolve '%2' as a
valid content key reference.

DOTJ061E Error Topic reference target is a
DITA map but the @format
attribute has not been set. Set
the @format attribute value to
'ditamap'.

DOTJ062E Error Invalid @%1 attribute value
'%2'.

DOTJ063E Error The @cols attribute is set
to '%1' but the number of
<colspec> elements was '%2'.
Check the number of columns
in the table.

DOTJ064W Warning The @chunk attribute uses
both 'to-content' and 'by-topic'
that conflict with each other.
Ignoring the 'by-topic' token.

DOTJ065I Info Branch filter generated topic
'%1' is used more than once.
Renaming '%1' to '%2'.

DOTJ066E Error No @id attribute on topic type
element '%1'. Using generated
ID '%2'.

DOTJ067E Error No @id attribute on topic type
element '%1'.

DOTJ068E Error Conref action 'mark' without
conref target.

A conref mark action has been used
to mark a target element without a
corresponding content reference target.
This may occur when the order of the
marked element and the pushed element
is reversed.

DOTJ069E Error Circular key definition '%1'. A circular reference was found in key
definitions: a series of key references
where the last key references the first.

This may occur if a <topicref> element
contains both a key name in the @keys
attribute and a reference to the same key
in the @keyref attribute, or if a @keyref
attribute points to a key that refers back
to the referencing element.

To resolve this issue, change the target
of the @keyref so the key is defined by
pointing to a resource other than itself.

260

DITA-OT error messages

Message ID Severity Message text Additional details

DOTJ070I Info An invalid @class attribute
'%1' was found for the <%2>
element. Processing as
an unknown or non-DITA
element.

When a @class attribute does not
use the expected syntax, this usually
indicates that @class has been explicitly
set on a DITA element. The attribute
should be removed from the document
so that the expected default value can be
automatically used.

If this is a non-DITA element, it needs to
be placed inside a <foreign> element
so that is not validated against DITA
rules.

DOTJ071E Error Cannot find the specified
DITAVAL file '%1'.

Make sure the DITAVAL file exists. If
more than one DITAVAL file is specified,
ensure that the paths are delimited
using the file path separator character
appropriate for your operating system
(semicolon ‘;’ on Windows, or colon ‘:’
on macOS or Linux).

DOTJ072E Error Email link without correct
@format attribute. Using
@format attribute value
'email'.

DOTJ073E Error Email link without correct
@scope attribute. Using
@scope attribute value
'external'.

DOTJ074W Warning The @rev attribute cannot be
used with the <prop> filter.

DOTJ075W Warning Absolute link '%1' without
correct @scope attribute.
Using @scope attribute value
'external'.

DOTJ076W Warning Absolute link '%1' without
correct @scope attribute.

DOTJ077F Fatal Invalid @action attribute '%1'
on DITAVAL property.

DOTJ078F Fatal The input resource '%1' cannot
be loaded. Make sure the
grammar files (such as DTDs
or schemas) for this document
type are properly referenced
and installed.

DOTJ079E Error The '%1' resource cannot
be loaded. Make sure the
grammar files (such as DTDs
or schemas) for this document
type are properly referenced
and installed.

DOTJ080W Warning Integrator configuration '%1'
has been deprecated. Use
plug-in configuration '%1'
instead.

261

Error messages and troubleshooting

Message ID Severity Message text Additional details

DOTJ081W Warning Ignoring empty @conref
attribute.

DOTJ082E Error Processing table cell failed.

DOTJ083E Error The resource referenced as
'%1' is capitalized differently on
disk.

DOTJ084E Error Cannot read '%1' with the '%2'
character set. Save the file
with '%2' encoding.

DOTJ085E Error The '%1' parameter cannot be
set with 'param' in project files.
Use '%2' instead.

DOTJ086W Warning Split @chunk attribute found
on <%1> element that does
not reference a topic. Ignoring
chunk operation.

DOTJ087W Warning Found @chunk attribute with
value '%1' inside combine
chunk. Ignoring chunk
operation.

DOTJ088E Error XML parsing error: %1

DOTX001W Warning No string named '%1' was
found for language '%2'. Using
the default language '%3'.
Add a mapping between
default language and desired
language for the string '%1'.

This build uses generated text, such as
the phrase “Related information” (which
is generated above many link groups).
The toolkit was unable to locate the string
%1 for your specified language, so the
text will appear in the default language.
This generally indicates that the toolkit’s
strings need to be updated to support
your language, or that your language
setting is incorrect.

DOTX002W Warning The @title attribute or element
in the DITA map is required for
Eclipse output.

The Eclipse help system requires a title in
the project files generated from your map.
Add a title to your input map to get valid
Eclipse help output.

DOTX003I Info The @anchorref attribute
should either reference
another DITA map or an
Eclipse XML TOC file. The
value '%1' does not appear to
reference either.

Eclipse uses anchor references to
connect with other TOC files. For this
to work in content generated from a
DITA map, the anchorref element must
reference either an existing Eclipse TOC
XML file, or another DITA map (which
will presumably also be converted to an
Eclipse TOC).

DOTX004I Info Found a <navref> element that
does not reference anything.
The <navref> element should
either reference another DITA
map or an Eclipse XML TOC
file.

Eclipse builds use DITA’s <navref>
element to pull in other Eclipse TOC files.
The build found a <navref> element
that does not reference any other file; the
element will be ignored.

262

DITA-OT error messages

Message ID Severity Message text Additional details

DOTX005E Error Unable to find navigation title
for reference to '%1'. Using '%1'
as the title in the Eclipse Table
of Contents.

To remove this message, provide a
navigation title for the referenced object
in the map or topic, or make sure you are
referencing a valid local DITA target.

DOTX006E Error Unknown file name extension
in @href attribute value '%1'.
References to non-DITA
resources should set the
@format attribute to match the
resource (for example, 'txt',
'pdf', or 'html').

Set the @format attribute to identify the
format of the file. If the reference is to a
DITA document, make sure the document
uses a valid DITA extension. By default,
DITA-OT supports the .dita and .xml
file name extensions for DITA topics, as
mandated by the DITA specification.

DOTX007I Info Only DITA topics, HTML files,
and images may be included
in the compiled CHM file.
Ignoring reference to '%1'. To
remove this message, set the
@toc attribute to 'no' or the
@processing-role attribute to
'resource-only' on the topic
reference.

The HTML Help compiler will only include
some types of information in the compiled
CHM file; the current reference will not be
included.

DOTX008E Error The resource '%1' cannot be
loaded. Make sure '%1' exists
and that you have permission
to access it.

The name of the file in this message may
have been changed to use a standard
DITA topic file name extension (.dita
or .xml) instead of the original extension
used by the file; it may also include a
path to the temporary directory rather
than to the original.

DOTX008W Warning The resource '%1' cannot be
loaded, and no navigation title
is specified for the table of
contents.

To fix the table of contents, specify a
navigation title in your map or make sure
the referenced file is local and can be
accessed. The name of the file in this
message may have been changed to
use a standard DITA topic file name
extension (.dita or .xml) instead of
the original extension used by the file; it
may also include a path to the temporary
directory rather than to the original.

DOTX009W Warning Cannot retrieve a title from
'%1'. Using '%2' instead.

No title was found in the specified topic,
so the table of contents will use the
indicated fallback value for this topic.

263

Error messages and troubleshooting

Message ID Severity Message text Additional details

DOTX010E Error Unable to find the @conref
target '%1'. Check '%1' to see if
the target resource exists.

The @conref attribute must be a URI
reference to an existing DITA element.
See URI-based addressing in the DITA
specification for details on the expected
syntax. The name of the file in this
message may have been changed to
use a standard DITA topic file name
extension (.dita or .xml) instead of
the original extension used by the file; it
may also include a path to the temporary
directory rather than to the original.

If the target element exists in your source
file, check to make sure it is not filtered
out of the build with a DITAVAL file
(which will remove the target before
conref processing runs).

This message may also appear if the
path to either the source file or the
content reference target exceeds the
platform’s maximum path length in bytes.

DOTX011W Warning There is more than one
possible target for the @conref
attribute value '%1'. Using the
first value found. Remove the
duplicate ID in the referenced
resource.

When pulling content with a @conref
attribute, you may only pull from a single
element, but the target ID appears twice
in the referenced topic. The name of
the file in this message may have been
changed to use a standard DITA topic
file name extension (.dita or .xml)
instead of the original extension used by
the file; it may also include a path to the
temporary directory rather than to the
original.

DOTX012W Warning When you conref another
topic or an item in another
topic, the @domains attribute
of the target topic must be
equal to or a subset of the
current topic's @domains
attribute. Put the target under
an appropriate domain.

This message is deprecated and should
no longer appear in any logs.

DOTX013E Error An element with the @conref
attribute set to '%1' indirectly
includes itself, which results in
an infinite loop.

This may appear if (for example) you
have a <ph> element that references
another phrase, but that phrase itself
contains a reference to the original. The
toolkit will stop following the conref trail
when this is detected; you will need to
correct the reference in your source files.
The name of the file in this message may
have been changed to use a standard
DITA topic file name extension (.dita
or .xml) instead of the original extension
used by the file; it may also include a
path to the temporary directory rather
than to the original.

264

http://docs.oasis-open.org/dita/dita/v1.3/os/part1-base/archSpec/base/uri-based-addressing.html#uri-based-addressing

DITA-OT error messages

Message ID Severity Message text Additional details

DOTX014E Error The @conref attribute value
'%1' uses invalid syntax.
Content references to a map
element should contain '#'
followed by an ID, such as
'mymap.ditamap#mytopicrefid'.

The @conref attribute must be a URI
reference to a DITA element. See
URI-based addressing in the DITA
specification for details on the expected
syntax.

DOTX015E Error The @conref attribute value
'%1' uses invalid syntax. The
value must contain '#' followed
by a topic or map ID, optionally
followed by '/elemID' for a sub-
topic element.

The @conref attribute must be a URI
reference to a DITA element. See
URI-based addressing in the DITA
specification for details on the expected
syntax. The name of the file in this
message may have been changed to
use a standard DITA topic file name
extension (.dita or .xml) instead of
the original extension used by the file; it
may also include a path to the temporary
directory rather than to the original.

DOTX016W Warning '%2' appears to reference
a DITA document, but
the @format attribute has
inherited a value of '%1'.
Processing as a non-DITA
resource. To process as DITA,
set the @format attribute to
'dita'.

This warning is intended to catch
instances where a non-DITA format
setting unexpectedly cascades to a
DITA topic, which will prevent the topic
from being processed. To remove this
message, set the @format attribute
directly on the indicated reference. The
name of the file in this message may
have been changed to use a standard
DITA topic file name extension (.dita
or .xml) instead of the original extension
used by the file; it may also include a
path to the temporary directory rather
than to the original.

DOTX017E Error Found a link or cross
reference with an empty @href
attribute. Remove the empty
@href attribute or provide a
value.

Found a value such as <xref
href="">link text</xref>. The
empty @href attribute value is not
serving a purpose and has caused
problems with some tools in the past; you
should remove the attribute entirely or
specify a value.

DOTX018I Info The @type attribute on a
topicref was set to '%1', but
the topicref references a more
specific '%2' topic. Note that
the @type attribute cascades
in maps, so the value '%1'
may come from an ancestor
topicref.

The @type attribute in DITA is intended
to describe the type of the target; for
example, a reference to a concept topic
may use type="concept". Generally,
this attribute is optional, and the DITA-
OT build will automatically determine the
value during processing. In this case, the
@type attribute lists a more general type
than what is actually found. This is not
an error, but links to this topic may not be
sorted as expected.

265

http://docs.oasis-open.org/dita/dita/v1.3/os/part1-base/archSpec/base/uri-based-addressing.html#uri-based-addressing
http://docs.oasis-open.org/dita/dita/v1.3/os/part1-base/archSpec/base/uri-based-addressing.html#uri-based-addressing

Error messages and troubleshooting

Message ID Severity Message text Additional details

DOTX019W Warning The @type attribute on a
topicref was set to '%1', but
the topicref references a '%2'
topic. This may cause links to
sort incorrectly in the output.
Note that the @type attribute
cascades in maps, so the
value '%1' may come from an
ancestor topicref.

The @type attribute in DITA is intended
to describe the type of the target; for
example, a reference to a concept topic
may use type="concept". Generally,
this attribute is optional, and the DITA-
OT build will automatically determine the
value during processing. In this case, the
specified @type value does not match
the target, so links to this topic may not
be sorted as expected.

DOTX020E Error Missing @navtitle attribute or
element for peer topic '%1'.
References must provide a
navigation title when the target
is not a local DITA resource.

DITA-OT is only able to dynamically
retrieve titles when the target is a local
(not peer or external) DITA resource.

DOTX021E Error Missing @navtitle attribute or
element for non-DITA resource
'%1'. References must provide
a navigation title when the
target is not a local DITA
resource.

DITA-OT is only able to dynamically
retrieve titles when the target is a local
DITA resource.

DOTX022W Warning Unable to retrieve navtitle from
target: '%1'. Using topicmeta
linktext as the navigation title.

The build was unable to get a title
from the referenced topic; instead, a
navigation title will be created based on
the content of the <linktext> element
in <topicmeta>.

DOTX023W Warning Unable to retrieve navtitle from
target: '%1'.

If the target is a local DITA topic, make
sure the reference is correct and the
topic is available. Otherwise, provide
a navigation title, and ensure the
@scope and @format attributes are set
appropriately.

DOTX024E Error Missing linktext and navtitle
for peer topic '%1'. References
must provide a navigation title
when the target is not a local
DITA resource.

DITA-OT can only retrieve titles and
link text when the target is a local DITA
resource (not a peer topic).

DOTX025E Error Missing linktext and navtitle
for non-DITA resource '%1'.
References must provide a
navigation title when the target
is not a local DITA resource.

DITA-OT can only retrieve titles and
link text when the target is a local DITA
resource (not peer or external).

DOTX026W Warning Unable to retrieve linktext from
target: '%1'. Using navigation
title as fallback.

The reference to this document did not
specify any link text for generated map-
based links; the navigation title will be
used as fallback.

DOTX027W Warning Unable to retrieve linktext from
target: '%1'.

The referenced file did not specify any
link text for generated map-based links,
and no fallback text could be located. Any
links generated from this reference will
have incorrect link text.

266

DITA-OT error messages

Message ID Severity Message text Additional details

DOTX028E Error Link or cross reference must
contain a valid @href or
@keyref attribute; no link
target is specified.

The link or cross reference has no target
specified and will not generate a link.

DOTX029I Info The @type attribute on a <%1>
element was set to '%3', but
the reference is to a more
specific '%4' '%2'. This may
cause links to sort incorrectly
in the output.

The @type attribute in DITA is intended
to describe the type of the target; for
example, a reference to a concept topic
may use type="concept". Generally,
this attribute is optional, and the DITA-
OT build will automatically determine the
value during processing. In this case, the
@type attribute lists a more general type
than what is actually found. This is not
an error, but links to this topic may not be
sorted as expected.

DOTX030W Warning The @type attribute on a <%1>
element was set to '%3', but
the reference is to a '%4' '%2'.
This may cause links to sort
incorrectly in the output.

The @type attribute in DITA is intended
to describe the type of the target; for
example, a reference to a concept topic
may use type="concept". Generally,
this attribute is optional, and the DITA-
OT build will automatically determine the
value during processing. In this case, the
specified @type value does not match
the target, so links to this topic may not
be sorted as expected.

DOTX031E Error The '%1' resource is not
available to resolve link
information.

The build attempted to access the
specified file to retrieve a title or short
description, but the file could not be
found. If the file exists, it is possible that
a DITAVAL file was used to remove the
file’s contents from the build. Be aware
that the path information above may not
match the link in your topic.

DOTX032E Error Unable to retrieve link text
from target: '%1'. If the target
is not accessible at build
time, or does not have a title,
provide the link text inside the
reference.

When a link or cross reference does not
have content, the build will attempt to
pull the target’s title for use as link text.
If the target is unavailable, be sure to set
the @scope attribute to an appropriate
value. If the target does not have a title
(such as when linking to a paragraph), be
sure to provide link text inside the cross
reference.

DOTX033E Error Unable to generate link text for
a cross reference to a list item:
'%1'.

An <xref> element specifies
type="li", which indicates a link to a
list item, but the item number could not
be determined to use as link text. Specify
link text inside the reference, or make
sure you are referencing an available list
item.

DOTX034E Error Unable to generate link text
for a cross reference to an
unordered list item: '%1'.

The cross reference goes to a list item in
an unordered list. The process could not
automatically generate link text because
the list item is not numbered. Provide link
text within the cross reference.

267

Error messages and troubleshooting

Message ID Severity Message text Additional details

DOTX035E Error Unable to generate the correct
number for a cross reference
to a footnote: '%1'.

An <xref> element specifies
type="fn", which indicates a link to a
footnote, but the footnote number could
not be determined to use as link text.
Specify link text inside the reference,
or make sure you are referencing an
available footnote.

DOTX036E Error Unable to generate link text for
a cross reference to a dlentry
(the dlentry or term cannot be
found): '%1'.

An <xref> element specifies
type="dlentry", which indicates a link
to a definition list entry, but the term could
not be located to use as link text. Specify
link text inside the reference, or make
sure you are referencing an available
definition list entry.

DOTX037W Warning No title found for this
document; using '***' as HTML
page title.

No title was found for the current
document, so the HTML output file will
set the <title> to ***. This value
generally appears in the title bar at the
top of a browser.

DOTX038I Info Ignoring the @longdescref
attribute on the <%1> element.
Accessibility for object
elements needs to be handled
another way.

The <object> element in HTML
does not support @longdescref
for accessibility. To make the object
accessible, you may need to add text
before or after the element. You may
also be able to handle it with a <param>
element inside the object.

DOTX039W Warning Required cleanup area found.
To remove this message and
hide the content, build without
the DRAFT parameter.

This message is generated when creating
draft output to help you locate all topics
that need to be cleaned up; the cleanup
items will appear in your output with
styling that makes it stand out. The
content will be hidden when the draft
parameter is not active.

DOTX040I Info Draft comment area found. To
remove this message and hide
the comments, build without
the DRAFT parameter.

This message is generated when creating
draft output to help you locate all topics
that have draft comments. Each comment
will appear in your HTML output; the
comments will be hidden when the draft
parameter is not active.

DOTX041W Warning Found more than one <title>
element in a <%1> element.
Using the first one as the
element title.

Because of the way XML and DITA
are defined, it is generally not possible
to prohibit adding a second title to a
section during editing (or to force that
title to come first). However, the DITA
specification states that only one title
should be used in a section. When
multiple titles are found, only the first one
will appear in the output.

DOTX042I Info DITAVAL-based flagging is not
currently supported for inline
phrases in XHTML; ignoring
flag value on '%1' attribute.

If it is important to flag this piece of
information, try placing a flag on the block
element that contains your phrase. If you
just want to have an image next to the
phrase, you may place an image directly
into the document.

268

DITA-OT error messages

Message ID Severity Message text Additional details

DOTX043I Info The link to '%1' may appear
more than once in '%2'.

DITA-OT is able to remove duplicate links
in most cases. However, if two links to
the same resource use different attributes
or link text, it is possible for them to
appear together. For example, if the
same link shows up with role="next"
and again with no specified role, it may
show up as both the “Next topic” link
and as a related link. Note that links
generated from a <reltable> in a DITA
map will have the @role attribute set to
friend.

DOTX044E Error The <area> element in an
image map does not specify
a link target. Add an <xref>
element with a link target to
the <area> element.

The <area> element in an image map
must provide a link target for the specified
area. Add an <xref> element as a child
of <area> and make sure it specifies a
link target.

DOTX045W Warning The <area> element in an
image map should specify link
text for better accessibility.
Link text should be specified
directly when the target is not
a local DITA resource.

Cross reference text inside the <area>
element is used to provide accessibility
for screen readers that can identify
different areas of an image map. If text
cannot be retrieved automatically by
referencing a DITA element, it should be
specified directly in the cross reference.

DOTX046W Warning Area shape should be one of:
default, rect, circle, poly, or
blank (no value). The value
'%1' is not recognized.

The specified value was passed as-is
through to the <area> element in the
HTML.

DOTX047W Warning Area coordinates are blank.
Coordinate points for the
shape need to be specified.

The <area> element is intended to
define a region in an image map;
coordinates must be specified to define
that region.

DOTX048I Info To include the peer or external
topic '%1' in your help file,
you may need to recompile
the CHM file after making the
resource available.

The build will not look for peer or external
topics before compiling your CHM file,
so they may not be included. If you are
referencing an actual HTML file that will
not be available, it cannot be included
in the project, and you should set the
@toc attribute to no on the <topicref>
element. Otherwise, make sure the HTML
file was included in the CHM; if it was
not, you will need to place it in the correct
location with your other output files and
recompile.

DOTX049I Info References to non-DITA files
are ignored by the PDF, ODT,
and RTF transformations.

The PDF, ODT, and RTF output
processes cannot automatically convert
non-DITA content into DITA to merge
it with the rest of your content. The
referenced items are ignored.

DOTX050W Warning The default ID
'org.sample.help.doc' is used
for the Eclipse plug-in. To use
your own plug-in ID, specify it
using the @id attribute on the
map.

Eclipse requires that an ID be specified
when creating an Eclipse Help project;
the toolkit expects to locate that ID on the
root element of your input map.

269

Error messages and troubleshooting

Message ID Severity Message text Additional details

DOTX052W Warning No string named '%1'
was found when creating
generated text; using the value
'%1' in the output.

The toolkit is attempting to add generated
text, such as the string “Related
information” that appears above links.
The requested string could not be found
in any language. Your output may contain
a meaningful string, or it may contain
a code that was intended to map to a
string. This likely indicates an error in a
plug-in or XSL override; either the string
was requested incorrectly, or you will
need to provide a mapping for the string
in all of the languages you require.

DOTX053E Error A element that references
another map indirectly
includes itself, which results
in an infinite loop. The original
map reference is to '%1'.

This will occur if a map references
another map, and then that second
map (or another further nested map)
references the original map. Correct
the chain of map references to remove
circular references.

DOTX054W Warning Conflict text style is applied
on the current element based
on DITAVAL flagging rules.
Check the DITAVAL and DITA
source files to make sure
there is no style conflict on
the element that needs to be
flagged.

This will occur when a DITAVAL file
contains multiple styling rules that apply
to the same element.

DOTX055W Warning A customized stylesheet
uses the deprecated 'flagit'
template. Conditional
processing is no longer
supported using this template.
Update the stylesheet to
use the 'start-flagit' template
instead of the 'flagit' template.

The flagit named template was
deprecated in DITA-OT version 1.4,
when the OASIS standard formalized
the DITAVAL syntax. The template was
removed in DITA-OT 1.6. Any stylesheets
that use this template must be updated.

DOTX056W Warning The '%1' resource is not
available to resolve link
information.

The build attempted to access the
specified file to retrieve a title or short
description, but the file could not be
found. If the file exists, it is possible that
a DITAVAL file was used to remove the
file’s contents from the build. Another
possibility is that the file is located
outside of the scope of the main input
directory, and was not available because
the onlytopic.in.map parameter was
specified. Be aware that the path
information above may not match the link
in your topic.

DOTX057W Warning The link or cross reference
target '%1' cannot be found,
which may cause errors in the
output.

The link appears to use valid syntax
to reference a DITA element, but that
element cannot be found. Check that the
element exists, and is not removed from
the build by DITAVAL filtering.

270

DITA-OT error messages

Message ID Severity Message text Additional details

DOTX058W Warning No glossary entry found for
the '%1' key on the <%2>
element. Check display text
and hover text for terms and
abbreviations.

Processing for terms, acronyms, or
abbreviated forms associates the key
from the element’s @keyref attribute
with a glossary entry topic. This message
appears if the key is defined, but not
associated with a <glossentry>
element. The process will try to use the
best available fallback (usually the title of
the referenced topic).

DOTX060W Warning The '%1' key is used in
an <abbreviated-form>
element, but the key is not
associated with a glossary
entry. Abbreviated-form should
ONLY be used to reference a
glossary entry.

Processing for abbreviated form elements
associates the key from the element’s
@keyref attribute with a glossary entry
topic. This message appears if the key
is defined, but not associated with a
<glossentry> element. This element
is only supported with keys that are
associated with glossary topics; the
element will not generate any output.
Correct the reference, or use a different
element to reference your topic.

DOTX061W Warning The @href attribute value '%1'
contains a fragment identifier,
but it does not reference a
topic element. The @href
attribute on a <topicref>
element should only reference
topic-level elements.

According to the DITA specification,
references from maps should either
point to DITA maps, DITA topics, or
non-DITA resources. References below
the topic level should only be made via
<xref> cross references within topics.
For details, see the @href attribute
description in the topicref element
definition.

DOTX062I Info It appears that this document
uses constraints, but the
conref processor cannot
validate that the target of a
conref is valid. To enable
constraint checking, upgrade
to an XSLT 2.0 processor.

DOTX063W Warning The DITA document '%1' is
linked to from the content, but
not referenced by a <topicref>
element in the map. Include
the topic in the map to avoid a
broken link.

This message appears when generating
PDF or ODT output that includes a link to
a local topic, but the referenced topic is
not part of the map itself. This will result
in a broken link. You should include the
topic in your map or remove the link from
the build.

DOTX064W Warning The @copy-to attribute value
'%1' uses the name of a
resource that already exists,
so this attribute is ignored.

Make sure that all @copy-to attributes
define unique names.

DOTX065W Warning Two unique source files each
specify a @copy-to attribute
value '%2', which results in a
collision. Ignoring the @copy-
to value associated with the
@href value '%1'.

Two different topics are copied to
the same location using @copy-to
attributes. To prevent data loss, only
the first instance will be applied. To
create multiple copies, make sure that
all @copy-to attributes define unique
names.

271

http://docs.oasis-open.org/dita/v1.2/os/spec/langref/topicref.html

Error messages and troubleshooting

Message ID Severity Message text Additional details

DOTX066W Warning The '%1' template is
deprecated. Remove
references to this template
from the custom XSLT or plug-
ins.

This message indicates that your custom
XSLT or plug-ins rely on templates
that will be removed in an upcoming
release. Typically this occurs when a
named template has been converted to
a mode template; any code that uses the
deprecated template should be updated.

DOTX067E Error No string named '%1' was
found for language '%2'. Add a
mapping for the string '%1'.

This PDF build uses generated text,
such as the phrase “Related information”
(which is generated above many link
groups). The toolkit was unable to locate
the string %1 for your specified language,
so the text will appear in the default
language. This generally indicates that
the toolkit’s strings need to be updated
to support your language, or that your
language setting is incorrect.

DOTX068W Warning A <topicref> element that
references a map contains
child <topicref> elements.
Ignoring child topic references.

DOTX069W Warning The '%1' template mode
is deprecated. Remove
references to this template
mode from custom XSLT or
plug-ins.

DOTX070W Warning The '%1' target is deprecated.
Remove references to this
target from custom Ant files.

DOTX071E Error Unable to find conref range
end element with ID '%1'.

DOTX071W Warning The '%1' parameter on the '%2'
template is deprecated. Use
the '%3' parameter instead.

DOTX072I Info Ignoring navtitle within
topicgroup.

DOTX073I Info Removing broken link to '%1'.

DOTX074W Warning No formatting defined for
unknown @class attribute
value '%1'.

DOTX075W Warning A content reference in a
constrained document type
is pulling content from an
unconstrained document
type. Resolving this reference
may result in content that
violates one of the document
constraints in '%1'.

272

DITA-OT error messages

Message ID Severity Message text Additional details

DOTX076E Error A content reference in a
constrained document type
cannot be resolved because
it would violate one of the
document constraints '%1'. The
current constrained document
may only reuse content from
documents with equivalent
constraints.

DOTX077I Info Resolving content references
results in duplicate ID '%1'.
Rewriting resolved version to
'%2'.

INDX001I Info Index entry '%1' will be sorted
under the "Special characters"
heading.

INDX002E Error The PDF indexing process
could not find the proper sort
location for '%1', so the term
has been dropped from the
index.

INDX003E Error The build failed due to
problems encountered when
sorting the PDF index.

PDFJ001E Error The PDF indexing process
cannot find the proper sort
location for '%1', so the term
has been dropped from the
index.

PDFJ002E Error The build failed due to
problems encountered
when sorting the PDF index.
Address any messages
located earlier in the log.

The PDF index process relies on pre-
defined letter headings when sorting
terms. The specified term does not begin
with a character that can be mapped to
an existing heading. Typically this term
would be placed in a “Special characters”
group, but the current language did not
specify such a group when setting up the
index sort process.

PDFJ003I Info Index entry '%1' will be sorted
under the 'Special characters'
heading.

The PDF index process relies on pre-
defined letter headings when sorting
terms. The specified term does not begin
with a character that can be mapped
to an existing heading, so it has been
placed under a heading for terms that
begin with special characters such as
punctuation. If this term should be sorted
under a new or existing letter heading,
open an issue in the DITA-OT GitHub
issues tracker to correct the sort.

273

https://github.com/dita-ot/dita-ot/issues
https://github.com/dita-ot/dita-ot/issues

Error messages and troubleshooting

Message ID Severity Message text Additional details

PDFX001W Warning An index term range is
specified with a @start
attribute value of '%1', but
there is no matching @end
attribute. To end the range,
add an index term in a valid
location with the @end
attribute set to '%1'.

PDFX002W Warning There are multiple index
terms specified with a @start
attribute value of '%1', but
there is only one term to end
this range, or the ranges for
this term overlap. Make sure
that each term with this start
value has a matching end
value, and that the specified
ranges for this value do not
overlap.

PDFX003W Warning Multiple index entries close the
index range '%1'. Make sure
that each index term with a
@start attribute value of '%1'
has only one matching term
with a corresponding @end
attribute value.

PDFX004F Error Found a topic reference with
an empty @href attribute
value. Please specify a target
or remove the @href attribute.

PDFX005F Error The '%1' topic reference
cannot be found. Please
correct the @href attribute
value, or set the @scope or
@format attribute if the target
is not a local DITA topic.

PDFX007W Warning Found an index term with
@end attribute value '%1', but
no start term was found for this
entry.

PDFX008W Warning Font definition not found for
the logical name or alias '%1'.

PDFX009E Error Attribute set reflection cannot
handle the XSLT element
<%1>.

PDFX011E Error The index term '%2' uses both
an <index-see> element and
an <%1> element. Convert
the <index-see> element to
<index-see-also>.

Found an <index-see> element as
a child of a term that also exists as a
standalone index term, or as a term
that also uses <index-see-also>.
When using <index-see> with an index
term, that term should not be used to
create page references and should not
reference additional terms. Treating the
<index-see> as <index-see-also>.

274

DITA-OT error messages

Message ID Severity Message text Additional details

PDFX012E Error Found a table row with more
entries than allowed. Check
the number of columns in the
table.

PDFX013F Fatal The PDF file '%1' cannot be
generated.

XEPJ001W Warning %1

XEPJ002E Error %1

XEPJ003E Error %1

275

Error messages and troubleshooting

276

Other error messages

Chapter 26 Other error messages

In addition to error messages that DITA Open Toolkit generates, you might also
encounter error messages generated by Java or other tools.

Out of Memory error

In some cases, you might receive a message stating the build has failed due to an Out of
Memory error. Try the following approaches to resolve the problem:

1. Increase the memory available to Java.

2. Reduce memory consumption by setting the generate-debug-attributes option
to false. This option is set in the lib/configuration.properties file. This will
disable debug attribute generation (used to trace DITA-OT error messages back to source
files) and will reduce memory consumption.

3. Set dita.preprocess.reloadstylesheet Ant property to true. This will allow the
XSLT processor to release memory when converting multiple files.

4. Run the transformation again.

UnsupportedClassVersionError

If you receive a java.lang.UnsupportedClassVersionError error message with an
Unsupported major.minor version and a list of Java classes, make sure your system
meets the minimum Java requirements as listed in the Release Notes and installation instructions.

Unable to locate tools.jar

If a Java Runtime Environment (JRE) is used when building output via Ant, the Unable to
locate tools.jar error may appear. This message is safe to ignore, since DITA-OT
does not rely on any of the functions in this library. If a Java Development Kit (JDK) is also
installed, setting the JAVA_HOME environment variable to the location of the JDK will prevent
this message from appearing.

277

Error messages and troubleshooting

278

Accessing help for the dita command

Chapter 27 Accessing help for the dita command

You can access a list of subcommands and supported parameters for the dita command
by passing the --help option on the command line.

Procedure

1. Open a command prompt or terminal session.

2. Issue the following command:

dita --help

3. Optional: For details on the arguments and options available for each subcommand, pass the
--help option after the subcommand name.
For example: dita install --help.

Results

A brief usage summary appears in the command-line window, along with a list of subcommands,
arguments, and options.

279

Error messages and troubleshooting

280

Increasing Java memory allocation

Chapter 28 Increasing Java memory allocation

If you are working with large documents with extensive metadata or key references, you
will need to increase the memory allocation for the Java process. You can do this from
the command-line prompt for a specific session, or you can increase the value of the
ANT_OPTS environment variable.

Procedure

• To change the value for a specific session, from the command prompt, issue the following
command:

Platform Command

Linux or macOS export ANT_OPTS=$ANT_OPTS -
Xmx1024M

Windows set ANT_OPTS=%ANT_OPTS% -
Xmx1024M

This increases the JVM memory allocation to 1024 megabytes. The amount of memory which
can be allocated is limited by available system memory and the operating system.

• To persistently change the value, change the value allocated to the ANT_OPTS environment
variable on your system.

281

Error messages and troubleshooting

282

Speeding up builds

Chapter 29 Speeding up builds

Several configuration changes can significantly reduce DITA-OT processing time.

Disable debug attribute generation

The generate-debug-attributes parameter determines whether debugging attributes
are generated in the temporary files. By changing the value to false, DITA-OT will no longer
generate the @xtrf and @xtrc debug attributes. This will make it more difficult to track down
the source file location from which a given issue may have originated, but it will reduce the size
of the temporary files. As a result, XML parsing will take less time and overall processing time
will be reduced.

Use a fast disk for the temporary directory

DITA-OT keeps topic and map files as separate files and processes each file multiple times
during pre-processing. Thus reading from disk, parsing XML, serializing XML, and writing
to disk makes processing quite I/O intensive. Use either an SSD or a RAM disk for temporary
files, and never use a temporary directory that is not located on the same machine as where the
processing takes place.

Enable parallel processing

As of DITA-OT 3.6, pre-processing module code can be run in parallel by setting the parallel
parameter to true. The performance benefits this option provides depend heavily on the source
file set, the DITA features used in the project, and the computer doing the processing, but under
the right circumstances, you may see notable improvements when this option is enabled.

Enable in-memory processing

As of DITA-OT 3.6, the Cache Store can be activated by setting the store-type parameter to
memory. In-memory processing provides performance advantages in I/O bound environments
such as cloud computing platforms, where processing time depends primarily on how long it
takes to read and write temporary files. For more information, see Store API – Processing in
memory on page 294.

Reuse the JVM instance

For all but large source sets, the Java virtual machine (JVM) will not have enough time to warm-
up. By reusing the same JVM instance, the first few DITA-OT conversions will be “normal”,
but when the Just-In-Time (JIT) compiler starts to kick in, the performance increase may be 2-10
fold. This is especially noticeable with smaller source sets, as much of the DITA-OT processing
is I/O intensive.

Tip: The Gradle Daemon uses this mechanism (along with incremental builds) to reduce
processing time. You can run DITA-OT with these features via the DITA-OT Gradle Plugin.

283

http://en.wikipedia.org/wiki/Solid-state_drive
http://en.wikipedia.org/wiki/RAM_drive
https://docs.gradle.org/current/userguide/gradle_daemon.html
https://github.com/eerohele/dita-ot-gradle

Error messages and troubleshooting

Use the latest Java version

DITA-OT 2.0 to 2.3 require Java 7, and DITA-OT 2.4 and newer require Java 8. However, using
a newer version of Java may further reduce processing time, depending on your operating system.

Re-enable Java file caching

As of Java 12, the file canonicalization cache is no longer enabled by default (see JDK-8207005).
On Windows, this results in significantly longer build times, and slight increases on Linux. To
re-enable file caching, add -Dsun.io.useCanonCaches=true to the Java invocation
command in the dita.bat and ant.bat wrapper scripts.

Note: As of DITA-OT 3.7.3, this system property is set by default in the bundled wrapper
scripts.

Collected links

SSD
RAM disk

284

https://bugs.openjdk.org/browse/JDK-8207005
http://en.wikipedia.org/wiki/Solid-state_drive
http://en.wikipedia.org/wiki/RAM_drive

Configuring proxies

Chapter 30 Configuring proxies

Certain commands, for example, the dita install command, use a network
connection to install plug-ins from the configured registry or process remote referenced
resources. In environments where an HTTP proxy is used to establish a network
connection, you can provide the proxy configuration via the ANT_OPTS environment
variable.

Procedure

• To configure the proxy for a specific session, from the command prompt, issue the following
command:

Platform Command

Linux or macOS
export ANT_OPTS="-Dhttp.proxySet=true \
 -
Dhttps.proxyHost=<HTTPS proxy IP
 address> \
 -Dhttp.proxyHost=<HTTP
 proxy IP address> \
 -Dhttp.proxyPort=<HTTP
 proxy port> \
 -
Dhttps.proxyPort=<HTTPS proxy port>"

Windows
set ANT_OPTS=%ANT_OPTS% -
Dhttp.proxySet=true ^
 -
Dhttps.proxyHost=<HTTPS proxy IP
 address> ^
 -
Dhttp.proxyHost=<HTTP proxy IP address>
 ^
 -
Dhttp.proxyPort=<HTTP proxy port> ^
 -
Dhttps.proxyPort=<HTTPS proxy port>

• To persistently change the value, change the value allocated to the ANT_OPTS environment
variable on your system.

What to do next

If a command has previously failed due to a connection timeout, issue the command again. For
example:

dita install <plug-in>

285

Error messages and troubleshooting

286

Part 7 Reference

The Reference topics provide more advanced information about the DITA-OT
architecture, OASIS specification support, and licensing.

Chapter 31 DITA-OT architecture..289
Chapter 32 DITA specification support..311
Chapter 33 Extension points... 325
Chapter 34 Markdown formats... 345
Chapter 35 License..367
Chapter 36 Resources..369

287

Reference

288

DITA Open Toolkit Architecture

Chapter 31 DITA Open Toolkit Architecture

DITA Open Toolkit is an open-source implementation of the OASIS specification for
the Darwin Information Typing Architecture. The toolkit uses Ant, XSLT, and Java to
transform DITA content (maps and topics) into different deliverable formats.

Processing structure...289
Map-first pre-processing... 290
Processing modules... 292
Processing order.. 293
Store API... 294
Pre-processing modules...295
HTML-based processing modules.. 305
PDF processing modules...308

Processing structure
DITA-OT implements a multi-stage, map-driven architecture to process DITA content.
Each stage in the process examines some or all of the content; some stages result in
temporary files that are used by later steps, while others stages result in updated copies of
the DITA content. Most of the processing takes place in a temporary working directory;
the source files themselves are never modified.

DITA-OT is designed as a pipeline. Most of the pipeline is common to all output formats; it is
known as the pre-processing stage. In general, any DITA process begins with this common set of
pre-processing routines.

Once the pre-processing is completed, the pipeline diverges based on the requested output format.
Some processing is still common to multiple output formats; for example, Eclipse Help and
HTML Help both use the same routines to generate XHTML topics, after which the two pipelines
branch to create different sets of navigation files.

The following image illustrates how the pipeline works for several common output formats: PDF,
Eclipse Help, HTML Help, XHTML, and HTML5.

Note: Other output formats may implement additional processing steps.

289

Reference

Common
Preprocessing Stage

T ype?

T opic Merge

T ransform T opics
to HTML

Eclipse help
navigation

T ransform to
XSL-FO

T ransform to PDF

Nav?

HTMLHelp
navigation

XHTML T oC,
HTML5 <nav>

Compile
HTMLHelp

Output

HTML-based formats

PDF

Merged XML

FO fi le

PDF

Eclipse
XHTML
HTML5
T ocJS

XHTML / HTML5Preprocessed map & topics

DIT A Map
& T opics

Copy assets (CSS, images, etc.)

Figure 63: Diagram of some possible paths through the transformation pipeline

Map-first pre-processing
DITA-OT provides a map-first pre-processing option as an alternative to the default
preprocess operation. The method, which was introduced in DITA-OT 2.5 as
an experimental feature, has since been improved and is ready for use in production
scenarios. Map-first pre-processing provides the same functionality as the default
preprocess, but takes a different approach.

Whereas the default pre-processing routine handles both maps and topics at the same time, often
switching back and forth between map operations and topic operations, the map-first approach
only begins processing topics after nearly all map processing is complete. This simplifies the
processing logic and creates cleaner module responsibilities, which makes it easier to process
only those topics that are actually referenced after filtering, for example, or to only process the
map to validate the map structure.

The current pre-processing architecture was established during the DITA 1.0 era when there were
fewer DITA features that operated on the map level. Initially, the difference between processing
modes was not that great. DITA 1.2 and 1.3 introduced many more map-level features, such as
keys and key scopes, that make it difficult to reliably work with topics before all map features
have been resolved.

The original pre-processing operation already handles many map operations first, but this was
not the original design and requires regular refactoring to handle edge cases. The new map-first
pre-processing is designed with this model in mind, improving the overall processing flow and
making it more formal about the map-first model. The new model also takes advantage of hashed
topic file names in the temporary directory, which simplifies many processing steps, and is better
able to handle topics referenced outside of the map directory (that case has resulted in a variety of
issues with the original model).

290

DITA Open Toolkit Architecture

As of DITA-OT 4.2, the map-first pre-processing pipeline also supports additional subject
scheme features.

Note: The map-first pre-processing option is enabled by default in DITA-OT 3.0 for PDF
and HTML Help. These formats were chosen because they generate a compiled result file, so
temporarily hashed file names should all be invisible to the build. After further testing and
feedback, the new option has been enabled for HTML5 output as of DITA-OT 4.2.

How to use map-first pre-processing

To use (or test) map-first pre-processing, call the preprocess2 Ant target in your custom
transformation types instead of the preprocess target.

For example, if you have a custom HTML5 transformation type named "myhtml", then you may
have a plug-in extension that looks this:

<!-- Simple variant: set properties and call default HTML5 -->
<target name="dita2myhtml" depends="myhtml.init,dita2html5"/>

This type of extension is quite common, and is used to set default properties for your environment
followed by a normal build to use those properties. As of DITA-OT 4.2, this approach will inherit
the map-first pre-processing routine from the HTML5 transformation.

In earlier versions, you’d need to replace dita2html5 with the normal HTML5 steps,
swapping out preprocess for preprocess2:

1 <!--·Simple·variant:·set·properties·and·call·default·HTML5·-->
2 <target·name="dita2myhtml"·
3 ········depends="myhtml.init,
4 ·················html5.init,
5 ·················build-init,
6 ·················preprocess2,
7 ·················html5.topic,
8 ·················html5.map,
9 ·················html5.css"/>

Note: If you use this simple method for customized PDF or HTML Help builds, you will
automatically be using preprocess2.

Some custom transformation types already require you to repeat the default dependencies, in
which case you should already call preprocess directly, as in the following:

1 <!--·More·complex·variant:·add·processing·steps·to·default·HTML5·-->
2 <target·name="dita2myhtml"
3 ········depends="myhtml.init,
4 ·················build-init,
5 ·················preprocess,
6 ·················local-extensions-after-preprocess,
7 ·················html5.topic,
8 ·················html5.map,
9 ·················html5.css"/>

In such cases, the modification is much easier – simply add a 2 to the existing preprocess
target.

291

Reference

How to test in a production environment

In some cases, you may be responsible for maintaining transformation types that are actually
run by many people on your team or around a company. In this case, you likely need to
maintain your existing transformation types based on the backwards-compatible preprocess
modules, but also want to provide your colleagues with a way to test their own documents using
preprocess2.

There are several ways to do this. One fairly straightforward approach would be to create
a new custom transformation type that is exactly the same, except for pre-processing. For
example, if you have a local HTML variant called myhtml as above, instead of modifying that
transformation directly, you could create a second transformation type called myhtml-beta
that provides exactly the same support, but with the new map-first pre-processing:

 1 <!--·Original·"myhtml"·is·not·modified,·used·for·production·-->
 2 <target·name="dita2myhtml5"·depends="myhtml.init,dita2html5"/>
 3

 4 <!--·"myhtml-beta"·used·to·test·and·provide·feedback·on·preprocess2·-->
 5 <target·name="dita2myhtml-beta"·
 6 ········depends="myhtml.init,
 7 ·················html5.init,
 8 ·················build-init,
 9 ·················preprocess2,
10 ·················html5.topic,
11 ·················html5.map,
12 ·················html5.css"/>

Known limitations

The internal extension points that run before or after individual steps in the original
preprocess pipeline (preprocess.*.pre/preprocess.*.post) are not available
in the newer map-first pre-processing pipeline (preprocess2), which is used in the PDF and
HTML Help transformations as of DITA-OT 3.0, and in HTML5 and Normalized DITA output
as of DITA-OT 4.2.

Processing modules
The DITA-OT processing pipeline is implemented using Ant. Individual modules within
the Ant script are implemented in either Java or XSLT, depending on such factors as
performance or requirements for customization. Virtually all Ant and XSLT modules can
be extended by adding a plug-in to the toolkit; new Ant targets may be inserted before or
after common processing, and new rules may be imported into common XSLT modules
to override default processing.

XSLT modules

The XSLT modules use shell files. Typically, each shell file begins by importing common rules
that apply to all topics. This set of common processing rules may in turn import additional
common modules, such as those used for reporting errors or determining the document locale.
After the common rules are imported, additional imports can be included in order to support
processing for DITA specializations.

292

DITA Open Toolkit Architecture

For example, XHTML processing is controlled by the xsl/dita2xhtml.xsl file. The
shell begins by importing common rules that are applicable to all general topics: xslhtml/
dita2htmlImpl.xsl. After that, additional XSLT overrides are imported for specializations
that require modified processing. For example, an override for reference topics is imported in
order to add default headers to property tables. Additional modules are imported for tasks, for
the highlighting domain, and for several other standard specializations. After the standard XSLT
overrides occur, plug-ins may add in additional processing rules for local styles or for additional
specializations.

Java modules

Java modules are typically used when XSLT is a poor fit, such as for processes that make use of
standard Java libraries (like those used for index sorting). Java modules are also used in many
cases where a step involves copying files, such as the initial process where source files are parsed
and copied to a temporary processing directory.

Processing order
The order of processing is often significant when evaluating DITA content. Although
the DITA specification does not mandate a specific order for processing, DITA-OT
has determined that performing filtering before conref resolution best meets user
expectations. Switching the order of processing, while legal, may give different results.

The DITA-OT project has found that filtering first provides several benefits. Consider the
following sample that contains a <note> element that both uses conref and contains a
@product attribute:

<note conref="documentA.dita#doc/note" product="MyProd"/>

If the @conref attribute is evaluated first, then documentA must be parsed in order to retrieve
the note content. That content is then stored in the current document (or in a representation of that
document in memory). However, if all content with product="MyProd" is filtered out, then that
work is all discarded later in the build.

If the filtering is done first (as in DITA-OT), this element is discarded immediately, and
documentA is never examined. This provides several important benefits:

• Time is saved by discarding unused content as early as possible; all future steps can load the
document without this extra content.

• Additional time is saved case by not evaluating the @conref attribute; in fact, documentA
does not even need to be parsed.

• Any user reproducing this build does not need documentA. If the content is sent to a
translation team, that team can reproduce an error-free build without documentA; this means
documentA can be kept back from translation, preventing accidental translation and increased
costs.

If the order of these two steps is reversed, so that conref is evaluated first, it is possible that
results will differ. For example, in the code sample above, the @product attribute on the

293

Reference

reference target will override the product setting on the referencing note. Assume that the
referenced <note> element in documentA is defined as follows:

<note id="note" product="SomeOtherProduct">This is an important note!</note>

A process that filters out product="SomeOtherProduct" will remove the target of the original
conref before that conref is ever evaluated, which will result in a broken reference. Evaluating
conref first would resolve the reference, and only later filter out the target of the conref. While
some use cases can be found where this is the desired behavior, benefits such as those described
above resulted in the current processing order used by DITA-OT.

Store API – Processing in memory
DITA-OT originally assumed resources would be available on disk and available from
file paths. Recent versions added URI input, so HTTPS resources could be used, but
temporary and output resources were still file-based. DITA-OT 3.6 introduces a new
Store API that can process temporary resources in memory instead of writing them to
disk.

The Store API (org.dita.dost.store.Store) is a Java abstraction over temporary file
operations. So for example instead of reading resources directly with FileInputStream,
the Store API provides operations for this. This abstraction allows implementations of the Store
API to choose how they handle resources, enables optimizations or non–file-based storage. Since
DITA-OT processes a lot of XML data, the Store API offers operations for XML processing
directly. For example, a read method to directly get a DOM Document, instead of opening a file
stream manually, parsing it with an XML parser, and getting the Document instance from the
parser.

The Store API is extendable using Java’s Resource Loader with the
org.dita.dost.store.StoreBuilder service. This is a builder interface to get named
Store instances (“a Store”).

Stream Store for file-based processing

This Store could also be a File Store, since it uses disk and local files for temporary resources.
This is the traditional DITA-OT implementation, where temporary XML files are stored under
the dita.temp.dir path.

The Stream Store is activated by setting the store-type parameter to file.

Note: To ensure backwards compatibility, the file Store is the default setting in DITA-OT
3.6.

Cache Store for in-memory processing

This Store is an in-memory Store, that keeps all temporary resources in memory. The name
comes from the feature of the Store, that it caches the parsed XML after reading. That is,
instead of storing XML as a byte array, it keeps it as a DOM Document or S9api XdmNode.
When the same resource is re-read later, it doesn't have to parse it again, only return the parsed

294

https://docs.oracle.com/javase/9/docs/api/java/util/ServiceLoader.html

DITA Open Toolkit Architecture

document. Resources that are not available in the temporary directory are handled with the
Stream Store.

While the Store doesn't write anything to the temporary directory, it will still use URIs where the
resources are under the temporary directory. The URIs are simply used for addressing, similarly
to URNs. Future releases of DITA-OT may use some other method of addressing, such as a tmp
URI scheme.

Tip: As of DITA-OT 3.6, the Cache Store can be activated by setting the store-type
parameter to memory.

Benefits

The initial implementation of the Cache Store is provided in DITA-OT 3.6 as a preview to allow
integration partners to test this new feature.

In-memory processing provides performance advantages in I/O bound environments such as
cloud computing platforms, where processing time depends primarily on how long it takes to read
and write temporary files.

The Store API also makes the Saxon S9api easier to use. It offers an XML document model
that is in most cases easier to work with than DOM. The abstraction Store makes it easier to work
with XML, so various modules don’t need to repeat the same type of XML processing code.

Caveats

Not all custom plug-ins will work with the Cache Store, because they may assume files are used
and expect direct file access for resource operations.

Important: To take advantage of the Store API, custom plug-ins must use DITA-OT XSLT
modules in custom <pipeline> elements instead of Ant’s built-in <xslt> tasks as
recommended in Plug-in coding conventions on page 151.

Pre-processing modules
The pre-processing operation is a set of steps that typically runs at the beginning of every
DITA-OT transformation. Each step or stage corresponds to an Ant target in the build
pipeline; the preprocess target calls the entire set of steps.

Generate lists (gen-list)

The gen-list step examines the input files and creates lists of topics, images,
document properties, or other content. These lists are used by later steps in the pipeline.
This step is implemented in Java.

For example, one list includes all topics that make use of the conref attribute; only those files are
processed during the conref stage of the build. The list file name name is derived from the list file

295

Reference

property. For example, the conref.list file is generated for “conreffile” and a corresponding
list property is provided for each generated list, in this case “conreflist”.

The result of this step is a set of several list files in the temporary directory, including
dita.list and dita.xml.properties.

List file property List file Usage

canditopicsfile canditopics.list

conreffile conref.list Documents that contain conref
attributes that need to be resolved in
preprocess.

conreftargetsfile conreftargets.list

copytosourcefile copytosource.list

flagimagefile flagimage.list

fullditamapandtopicfile fullditamapandtopic.list All of the ditamap and topic files
that are referenced during the
transformation. These may be
referenced by href or conref attributes.

fullditamapfile fullditamap.list All of the ditamap files in dita.list

fullditatopicfile fullditatopic.list All of the topic files in dita.list

hrefditatopicfile hrefditatopic.list All of the topic files that are referenced
with an href attribute

hreftargetsfile hreftargets.list Link targets

htmlfile html.list Resource files

imagefile image.list Image files that are referenced in the
content

outditafilesfile outditafiles.list

resourceonlyfile resourceonly.list

subjectschemefile subjectscheme.list

subtargetsfile subtargets.list

tempdirToinputmapdir.relative.value

uplevels

user.input.dir Absolute input directory path

user.input.file.listfile Input file list file

user.input.file Input file path, relative to the input
directory

Debug and filter (debug-filter)

The debug-filter step processes all referenced DITA content and creates copies in
a temporary directory. As the DITA content is copied, filtering is performed, debugging

296

DITA Open Toolkit Architecture

information is inserted, and table column names are adjusted. This step is implemented in
Java.

The following modifications are made to the DITA source:

• If a DITAVAL file is specified, the DITA source is filtered according to the entries in the
DITAVAL file.

• Debug information is inserted into each element using the @xtrf and @xtrc attributes. The
values of these attributes enable messages later in the build to reliably indicate the original
source of the error. For example, a message might trace back to the fifth <ph> element in a
specific DITA topic. Without these attributes, that count might no longer be available due to
filtering and other processing.

• The table column names are adjusted to use a common naming scheme. This is done only to
simplify later conref processing. For example, if a table row is pulled into another table, this
ensures that a reference to "column 5 properties" will continue to work in the fifth column of
the new table.

Resolve map references (mapref)

The mapref step resolves references from one DITA map to another. This step is
implemented in XSLT.

Maps reference other maps by using the following sorts of markup:

<topicref href="other.ditamap" format="ditamap"/>
...
<mapref href="other.ditamap"/>

As a result of the mapref step, the element that references another map is replaced by the topic
references from the other map. Relationship tables are pulled into the referencing map as a child
of the root element (<map> or a specialization of <map>).

Branch filtering (branch-filter)

The branch-filter step filters topics using DITAVAL files defined in the map.

Resolve key references (keyref)

The keyref step examines all the keys that are defined in the DITA source and resolves
the key references. Links that make use of keys are updated so that any @href value is

297

Reference

replaced by the appropriate target; key-based text replacement is also performed. This
step is implemented in Java.

Copy topics (copy-to)

The copy-to step makes a copy of original topic resources to new resources defined by
the @copy-to attribute.

Conref push (conrefpush)

The conrefpush step resolves “conref push” references to render the content of the
referencing element before, after, or in place of the referenced element. This step only
processes documents that use conref push or that are updated due to the push action. This
step is implemented in Java.

Resolve content references (conref)

The conref step resolves content references, processing only the DITA maps or topics
that use the @conref attribute. This step is implemented in XSLT.

The values of the @id attribute on referenced content are changed as the elements are pulled into
the new locations. This ensures that the values of the @id attribute within the referencing topic
remain unique.

If an element is pulled into a new context along with a cross reference that references the target,
both the values of the @id and @xref attributes are updated so that they remain valid in the new
location. For example, a referenced topic might include a section as in the following example:

 1 <topic·id="referenced_topic">
 2 ··<title>...</title>
 3 ··<body>
 4 ····<section·id="sect">
 5 ······<title>Sample·section</title>
 6 ······<p>Figure·<xref·href="#referenced_topic/fig"/>·
 7 ········contains·a·code·sample·that·demonstrates·...·.</p>
 8 ······<fig·id="fig">
 9 ········<title>Code·sample</title>
10 ········<codeblock>....</codeblock>
11 ······</fig>
12 ····</section>
13 ··</body>
14 </topic>

Figure 64: Referenced topic that contains a section and cross reference

When the section is referenced using a @conref attribute, the value of the @id attribute on the
<fig> element is modified to ensure that it remains unique in the new context. At the same time,
the <xref> element is also modified so that it remains valid as a local reference. For example, if

298

DITA Open Toolkit Architecture

the referencing topic has an @id set to "new_topic", then the conrefed element may look like this
in the intermediate document <section>.

1 <section·id="sect">
2 ··<title>Sample·section</title>
3 ··<p>Figure·<xref·href="#new_topic/d1e25"/>·contains·a·code·sample
4 ····that·demonstrates·...·.</p>
5 ··<fig·id="d1e25">
6 ····<title>Code·sample</title>
7 ····<codeblock>....</codeblock>
8 ··</fig>
9 </section>

Figure 65: Resolved conrefed <section> element after the conref step

In this case, the value of the @id attribute on the <fig> element has been changed to a
generated value of "d1e25". At the same time, the <xref> element has been updated to use that
new generated ID, so that the cross reference remains valid.

Filter conditional content (profile)

The profile step removes content from topics and maps based on the rules in
DITAVAL files or the @print attribute setting. Output can differ based on when
filtering is done.

Resolve topic fragments and code references (topic-
fragment)

The topic-fragment step expands content references to elements in the same topic
and resolves references made with the <coderef> element. This step is implemented in
SAX pipes.

Content references to elements in the same topic are defined via same-topic fragments such as
#./ID in URIs.

The <coderef> element is used to reference code stored externally in non-XML documents.
During the pre-processing step, the referenced content is pulled into the containing
<codeblock> element.

Chunk topics (chunk)

The chunk step breaks apart and assembles referenced DITA content based on the
@chunk attribute in maps. This step is implemented in Java.

DITA-OT has implemented processing for the following values of the @chunk attribute:

• select-topic

• select-document

• select-branch

• by-topic

299

Reference

• by-document

• to-content

• to-navigation

Move metadata (move-meta-entries) and pull content into
maps (mappull)

The move-meta-entries step pushes metadata back and forth between maps and
topics. For example, index entries and copyrights in the map are pushed into affected
topics, so that the topics can be processed later in isolation while retaining all relevant
metadata. This step is implemented in Java.

Note: As of DITA-OT 2.2, the move-meta-entries and mappull steps have been
merged. The mappull step has been moved into move-meta-entries.

The mappull step pulls content from referenced topics into maps, and then cascades data within
maps. This step is implemented in XSLT.

The mappull step makes the following changes to the DITA map:

• Titles are pulled from referenced DITA topics. Unless the @locktitle attribute is set to
"yes", the pulled titles replace the navigation titles specified on the <topicref> elements.

• The <linktext> element is set based on the title of the referenced topic, unless it is already
specified locally.

• The <shortdesc> element is set based on the short description of the referenced topic,
unless it is already specified locally.

• The @type attribute is set on <topicref> elements that reference local DITA topics. The
value of the @type attribute is set to value of the root element of the topic; for example, a
<topicref> element that references a task topic is given a @type attribute set to "task"".

• Attributes that cascade, such as @toc and @print, are made explicit on any child
<topicref> elements. This allows future steps to work with the attributes directly, without
reevaluating the cascading behavior.

Map-based linking (maplink)

This step collects links based on a map and moves those links into the referenced topics.
The links are created based on hierarchy in the DITA map, the @collection-type
attribute, and relationship tables. This step is implemented in XSLT and Java.

The maplink module runs an XSLT stylesheet that evaluates the map; it places all the generated
links into a single file in memory. The module then runs a Java program that pushes the generated
links into the applicable topics.

300

DITA Open Toolkit Architecture

Pull content into topics (topicpull)

The topicpull step pulls content into <xref> and <link> elements. This step is
implemented in XSLT.

If an <xref> element does not contain link text, the target is examined and the link text
is pulled. For example, a reference to a topic pulls the title of the topic; a reference to a list
item pulls the number of the item. If the <xref> element references a topic that has a short
description, and the <xref> element does not already contain a child <desc> element, a
<desc> element is created that contains the text from the topic short description.

The process is similar for <link> elements. If the <link> element does not have a child
<linktext> element, one is created with the appropriate link text. Similarly, if the <link>
element does not have a child <desc> element, and the short description of the target can be
determined, a <desc> element is created that contains the text from the topic short description.

Flagging (flag-module)

Beginning with DITA-OT 1.7, flagging support is implemented as a common flag-
module pre-processing step. The module evaluates the DITAVAL against all flagging
attributes, and adds DITA-OT–specific hints to the topic when flags are active. Any
extended transformation type may use these hints to support flagging without adding
logic to interpret the DITAVAL.

Evaluating the DITAVAL flags

Flagging is implemented as a reusable module during the preprocess stage. If a DITAVAL file is
not used with a build, this step is skipped with no change to the file.

When a flag is active, relevant sections of the DITAVAL itself are copied into the topic as a
sub-element of the current topic. The active flags are enclosed in a pseudo-specialization of the
<foreign> element (referred to as a pseudo-specialization because it is used only under the
covers, with all topic types; it is not integrated into any shipped document types).

<ditaval-startprop>

When any flag is active on an element, a <ditaval-startprop> element will be
created as the first child of the flagged element:

<ditaval-startprop class="+ topic/foreign ditaot-d/ditaval-startprop ">

The <ditaval-startprop> element will contain the following:

• If the active flags should create a new style, that style is included using standard
CSS markup on the @outputclass attribute. Output types that make use of CSS,
such as XHTML, can use this value as-is.

• If styles conflict, and a <style-conflict> element exists in the DITAVAL, it
will be copied as a child of <ditaval-startprop>.

301

Reference

• Any <prop> or <revprop> elements that define active flags will be copied in as
children of the <ditaval-startprop> element. Any <startflag> children
of the properties will be included, but <endflag> children will not.

<ditaval-endprop>

When any flag is active on an element, a <ditaval-endprop> element will be
created as the last child of the flagged element:

<ditaval-endprop class="+ topic/foreign ditaot-d/ditaval-endprop ">

CSS values and <style-conflict> elements are not included on this element.

Any <prop> or <revprop> elements that define active flags will be copied in as
children of <ditaval-prop>. Any <startflag> children of the properties will
be included, but <endflag> children will not.

Supporting flags in overrides or custom transformation types

For most transformation types, the <foreign> element should be ignored by default,
because arbitrary non-DITA content may not mix well unless coded for ahead of time. If
the <foreign> element is ignored by default, or if a rule is added to specifically ignore
<ditaval-startprop> and <ditaval-endprop>, then the added elements will have no
impact on a transform. If desired, flagging support may be integrated at any time in the future.

The processing described above runs as part of the common preprocess, so any transform that
uses the default preprocess will get the topic updates. To support generating flags as images,
XSLT-based transforms can use default fallthrough processing in most cases. For example, if a
paragraph is flagged, the first child of <p> will contain the start flag information; adding a rule
to handle images in <ditaval-startprop> will cause the image to appear at the start of the
paragraph content.

In some cases fallthrough processing will not result in valid output; for those cases, the flags must
be explicitly processed. This is done in the XHTML transform for elements like , because
fallthrough processing would place images in between and . To handle this, the code
processes <ditaval-startprop> before starting the element, and <ditaval-endprop>
at the end. Fallthrough processing is then disabled for those elements as children of .

302

DITA Open Toolkit Architecture

Example DITAVAL

Assume the following DITAVAL file is in use during a build. This DITAVAL will be used for
each of the following content examples.

 1 <?xml·version="1.0"·encoding="UTF-8"?>
 2 <val>
 3 ··<!--·Define·what·happens·in·the·case·of·conflicting·styles·-->
 4 ··<style-conflict·background-conflict-color="red"/>
 5

 6 ··<!--·Define·two·flagging·properties·that·give·styles·(no·image)·-->
 7 ··<prop·action="flag"·att="audience"·style="underline"·val="user"
 8 ········backcolor="green"/>
 9 ··<prop·action="flag"·att="platform"·style="overline"·val="win"
10 ········backcolor="blue"/>
11

12 ··<!--·Define·a·property·that·includes·start·and·end·image·flags·-->
13 ··<prop·action="flag"·att="platform"·val="linux"·style="overline"
14 ········backcolor="blue">
15 ····<startflag·imageref="startlin.png">
16 ······<alt-text>Start·linux</alt-text></startflag>
17 ····<endflag·imageref="endlin.png">
18 ······<alt-text>End·linux</alt-text></endflag>
19 ··</prop>
20

21 ··<!--·Define·a·revision·that·includes·start·and·end·image·flags·-->
22 ··<revprop·action="flag"·style="double-underline"·val="rev2">
23 ····<startflag·imageref="start_rev.gif">
24 ······<alt-text>START</alt-text></startflag>
25 ····<endflag·imageref="end_rev.gif"><alt-text>END</alt-text></endflag>
26 ··</revprop>
27 </val>

Content example 1: Adding style

Now assume the following paragraph exists in a topic. Class attributes are included, as they
would normally be in the middle of the preprocess routine; @xtrf and @xtrc are left off for
clarity.

<p audience="user">Simple user; includes style but no images</p>

Based on the DITAVAL above, audience="user" results in a style with underlining and with a
green background. The interpreted CSS value is added to @outputclass on <ditaval-
startprop>, and the actual property definition is included at the start and end of the element.
The output from the flagging step looks like this (with newlines added for clarity, and class
attributes added as they would appear in the temporary file):

The resulting file after the flagging step looks like this; for clarity, newlines are added, while
@xtrf and @xtrc are removed:

 1 <p·audience="user"·class="-·topic/p·">
 2 ··<ditaval-startprop
 3 ······class="+·topic/foreign·ditaot-d/ditaval-startprop·"
 4 ······outputclass="background-color:green;text-decoration:underline;">
 5 ····<prop·action="flag"·att="audience"·style="underline"·val="user"
 6 ··········backcolor="green"/>
 7 ··</ditaval-startprop>
 8 ··Simple·user;·includes·style·but·no·images
 9 ··<ditaval-endprop
10 ······class="+·topic/foreign·ditaot-d/ditaval-endprop·">
11 ····<prop·action="flag"·att="audience"·style="underline"·val="user"
12 ··········backcolor="green"/>
13 ··</ditaval-endprop>
14 </p>

303

Reference

Content example 2: Conflicting styles

This example includes a paragraph with conflicting styles. When the audience and platform
attributes are both evaluated, the DITAVAL indicates that the background color is both green and
blue. In this situation, the <style-conflict> element is evaluated to determine how to style
the content.

<p audience="user" platform="win">Conflicting styles (still no images)</p>

The <style-conflict> element results in a background color of red, so this value is added
to @outputclass on <ditaval-startprop>. As above, active properties are copied
into the generated elements; the <style-conflict> element itself is also copied into the
generated <ditaval-startprop> element.

The resulting file after the flagging step looks like this; for clarity, newlines are added, while
@xtrf and @xtrc are removed:

 1 <p·audience="user"·platform="win"·class="-·topic/p·">
 2 ··<ditaval-startprop
 3 ···········class="+·topic/foreign·ditaot-d/ditaval-startprop·"
 4 ···········outputclass="background-color:red;">
 5 ····<style-conflict·background-conflict-color="red"/>
 6 ····<prop·action="flag"·att="audience"·style="underline"·val="user"
 7 ··········backcolor="green"/>
 8 ····<prop·action="flag"·att="platform"·style="overline"·val="win"
 9 ··········backcolor="blue"/>
10 ··</ditaval-startprop>
11

12 ··Conflicting·styles·(still·no·images)
13

14 ··<ditaval-endprop
15 ···········class="+·topic/foreign·ditaot-d/ditaval-endprop·">
16 ····<prop·action="flag"·att="platform"·style="overline"·val="win"
17 ··········backcolor="blue"/>
18 ····<prop·action="flag"·att="audience"·style="underline"·val="user"
19 ··········backcolor="green"/>
20 ··</ditaval-endprop>
21 </p>

Content example 3: Adding image flags

This example includes image flags for both @platform and @rev, which are defined in
DITAVAL <prop> and <revprop> elements.

1 <ol·platform="linux"·rev="rev2">
2 ··Generate·images·for·platform="linux"·and·rev="2"
3

As above, the <ditaval-startprop> and <ditaval-endprop> nest the active property
definitions, with the calculated CSS value on @outputclass. The <ditaval-startprop>
drops the ending image, and <ditaval-endprop> drops the starting image. To make
document-order processing more consistent, property flags are always included before revisions
in <ditaval-startprop>, and the order is reversed for <ditaval-endprop>.

304

DITA Open Toolkit Architecture

The resulting file after the flagging step looks like this; for clarity, newlines are added, while
@xtrf and @xtrc are removed:

 1 <ol·platform="linux"·rev="rev2"·class="-·topic/ol·">
 2 ··<ditaval-startprop
 3 ···········class="+·topic/foreign·ditaot-d/ditaval-startprop·"
 4 ···········outputclass="background-color:blue;
 5 ························text-decoration:underline;
 6 ························text-decoration:overline;">
 7 ····<prop·action="flag"·att="platform"·val="linux"·style="overline"
 8 ··········backcolor="blue">
 9 ······<startflag·imageref="startlin.png">
10 ········<alt-text>Start·linux</alt-text></startflag></prop>
11 ····<revprop·action="flag"·style="double-underline"·val="rev2">
12 ······<startflag·imageref="start_rev.gif">
13 ········<alt-text>·</alt-text></startflag></revprop>
14 ··</ditaval-startprop>
15 ··<li·class="-·topic/li·">
16 ····Generate·images·for·platform="linux"·and·rev="2"
17 ··
18 ··<ditaval-endprop
19 ···········class="+·topic/foreign·ditaot-d/ditaval-endprop·">
20 ····<revprop·action="flag"·style="double-underline"·val="rev2">
21 ······<endflag·imageref="end_rev.gif">
22 ········<alt-text>END</alt-text></endflag></revprop>
23 ····<prop·action="flag"·att="platform"·val="linux"·style="overline"
24 ···backcolor="blue">
25 ······<endflag·imageref="endlin.png">
26 ········<alt-text>End·linux</alt-text></endflag></prop>
27 ··</ditaval-endprop>
28

Map cleanup (clean-map)

The clean-map step removes any elements and attributes that were added to files to
support pre-processing.

Copy related files (copy-files)

The copy-files step copies non-DITA resources to the output directory, such as
HTML files that are referenced in a map or images that are referenced by a DITAVAL
file. Which files are copied depends on the transformation type.

HTML-based processing modules
DITA-OT ships with several varieties of HTML output, each of which follows roughly
the same path through the processing pipeline. All HTML-based transformations begin

305

Reference

with the same call to the pre-processing module, after which they generate HTML files
and then branch to create the transformation-specific navigation files.

Common HTML-based processing

After the pre-processing operation runs, HTML-based builds each run a common series
of Ant targets to generate HTML file. Navigation may be created before or after this set
of common routines.

After the pre-processing is completed, the following targets are run for all of the HTML-based
builds:

• If the args.css parameter is passed to the build to add a CSS file, the copy-css target
copies the CSS file from its source location to the relative location in the output directory.

• If a DITAVAL file is used, the copy-revflag target copies the default start- and end-
revision flags into the output directory.

• The DITA topics are converted to HTML files. Unless the @chunk attribute was specified,
each DITA topic in the temporary directory now corresponds to one HTML file. The
dita.inner.topics.xhtml target is used to process documents that are in the map
directory (or subdirectories of the map directory). The dita.outer.topics.xhtml
target is used to process documents that are outside of the scope of the map, and thus might
end up outside of the designated output directory. Various DITA-OT parameters control how
documents processed by the dita.outer.topics.xhtml target are handled.

XHTML processing

After the XHTML files are generated by the common routine, the dita.map.xhtml
target is called by the xhtml transformation. This target generates a TOC file called
index.html, which can be loaded into a frameset.

HTML5 processing

After the HTML5 files are generated, the html5 transformation generates a table
of contents (ToC) file called index.html, which can be loaded as a cover page or
rendered in a navigation sidebar or menu via CSS.

As of DITA-OT 2.2, the nav-toc parameter can be used in HTML5 transformations to embed
navigation directly in topics using native HTML5 elements without JavaScript or framesets.

Eclipse help processing

The eclipsehelp transformation generates XHTML-based output and files that are
needed to create an Eclipse Help system plug-in. Once the normal XHTML process

306

DITA Open Toolkit Architecture

has run, the dita.map.eclipse target is used to create a set of control files and
navigation files.

Eclipse uses multiple files to control the plug-in behavior. Some of these control files are
generated by the build, while others might be created manually. The following Ant targets control
the Eclipse help processing:

dita.map.eclipse.init Sets up various default properties

dita.map.eclipse.toc Creates the XML file that defines an Eclipse
table of contents

dita.map.eclipse.index Creates the sorted XML file that defines an
Eclipse index

dita.map.eclipse.plugin Creates the plugin.xml file that controls the
behavior of an Eclipse plug-in

dita.map.eclipse.plugin.propertiesCreates a Java properties file that sets
properties for the plug-in, such as name and
version information

dita.map.eclipse.manifest.file Creates a MANIFEST.MF file that contains
additional information used by Eclipse

copy-plugin-files Checks for the presence of certain control files
in the source directory, and copies those found
to the output directory

dita.map.eclipse.fragment.language.initWorks in conjunction with the
dita.map.eclipse.fragment.language.country.init
and
dita.map.eclipse.fragment.error
targets to control Eclipse fragment files, which
are used for versions of a plug-in created for a
new language or locale

Several of the targets listed above have matching templates for processing content that is located
outside of the scope of the map directory, such as dita.out.map.eclipse.toc.

HTML Help processing

The htmlhelp transformation creates HTML Help control files. If the build runs on a
system that has the HTML Help compiler installed, the control files are compiled into a
CHM file.

Once the pre-processing and XHTML processes are completed, most of the HTML Help
processing is handled by the following targets:

dita.map.htmlhelp Create the HHP, HHC, and HHK files. The
HHK file is sorted based on the language of the
map.

307

Reference

dita.htmlhelp.convertlang Ensures that the content can be processed
correctly by the compiler, and that the
appropriate code pages and languages are used.

compile.HTML.Help Attempts to detect the HTML Help compiler.
If the compiler is found, the full project is
compiled into a single CHM file.

PDF processing modules
The PDF (formerly known as PDF2) transformation process runs the pre-processing
routine and follows it by a series of additional targets. These steps work together to create
a merged set of content, convert the merged content to XSL-FO, and then format the
XSL-FO file to PDF.

The PDF process includes many Ant targets. During a typical conversion from map to PDF, the
following targets are most significant.

map2pdf2 Creates a merged file by calling a common
Java merge module. It then calls the
publish.map.pdf target to do the
remainder of the work.

publish.map.pdf Performs some initialization and then calls the
transform.topic2pdf target to do the
remainder of processing.

transform.topic2pdf Converts the merged file to XSL-FO, generates
the PDF, and deletes the topic.fo file,
unless instructed to keep it.

The transform.topic2pdf target uses the following targets to perform those tasks:

transform.topic2fo Convert the merged file to an XSL-FO file.
This process is composed of several sub-
targets.

transform.topic2fo.index Runs a Java process to set up index processing,
based on the document language. This step
generates the file stage1.xml in the
temporary processing directory.

transform.topic2fo.flagging Sets up pre-processing for flagging based on
a DITAVAL file. This step generates the file
stage1a.xml in the temporary processing
directory.

transform.topic2fo.main Does the bulk of the conversion from DITA
to XSL-FO. It runs the XSLT-based process
that creates stage2.fo in the temporary
processing directory

transform.topic2fo.i18n Does additional localization processing on the
FO file; it runs a Java process that converts

308

DITA Open Toolkit Architecture

stage2.fo into stage3.fo, followed by
an XSLT process that converts stage3.fo
into topic.fo.

transform.fo2pdf Converts the topic.fo file into PDF using
the specified FO processor (Antenna House,
XEP, or Apache FOP).

delete.fo2pdf.topic.fo Deletes the topic.fo file, unless otherwise
specified by setting an Ant property or
command-line option.

History of the PDF transformation

The DITA Open Toolkit PDF transformation was originally based on a third-party
contribution by Idiom Technologies, and is commonly known as the “pdf2” plug-in.

When IBM developed the code that later became DITA-OT, it included only a proof-of-concept
PDF transformation. IBM had their own processing chain for producing PDFs from SGML,
which they had developed over several decades, so resources were focused primarily on XHTML
output and pre-processing.

Since the initial proof-of-concept transformation was not robust enough for production-grade
output, companies began to develop their own PDF transformations. One company, Idiom
Technologies, made their transformation (known as the “pdf2” transformation) available as
open source on 23 February 2006. The Idiom plug-in was initially available as a separately-
downloadable plug-in that could be installed into DITA-OT.

Later the DITA-OT project formally incorporated the Idiom plug-in as a demonstration in the
demo/fo directory. Beginning with DITA-OT version 1.5, released 18 December 2009, the
“pdf2” code served as the main, supported PDF transformation. (The original PDF transformation
was deprecated and renamed “legacypdf”.) In DITA-OT version 1.6, the “pdf2” plug-in was
moved to plugins/org.dita.pdf2.

The fact that the current PDF transformation was not originally developed in parallel with the
other core DITA-OT transformations led to anomalies that often confuse users:

• Elements are often (by default) styled differently in the XHTML and PDF transformations.
For example, consider the <info> element in a task topic. In HTML output, this is an inline
element; in PDF output, it is a block-level element.

• The auto-generated strings used for localization are different, and so languages that are
supported by DITA-OT differ based on whether the XHTML or PDF transformation is used.

• The Idiom plug-in used its own extension mechanism (the Customization folder) to
provide overrides to the PDF transformation.

• Before the release of DITA 1.1 (which added support for the indexing domain), Idiom
developed an index extension that used a FrameMaker-inspired syntax.

309

Reference

310

DITA specification support

Chapter 32 DITA specification support

DITA Open Toolkit 4.3 supports all versions of the OASIS DITA specification, including
1.0, 1.1, 1.2, and 1.3.

DITA 1.2 support.. 311
DITA 1.3 support.. 312
DITA 2.0 preview... 313
Implementation-dependent features.. 316
Codeblock extensions..318
DITA features in docs...321

DITA 1.2 support
DITA Open Toolkit 4.3 supports the DITA 1.2 specification. While 1.2 is no longer the
latest version of DITA, the grammar files (DTD and XML Schema) are still included
with DITA-OT and content explicitly created for 1.2 continues to work as intended.

Highlights of DITA 1.2 support in the toolkit include:

• Processing support for all new elements and attributes

• Link redirection and text replacement using @keyref

• New @processing-role attribute in maps to allow references to topics that will not
produce output artifacts

• New content reference extensions, including the ability to reference a range of elements, to
push content into another topic, and to use keys for resolving a @conref attribute.

• The ability to filter content with controlled values and taxonomies using Subject Scheme
Maps

• Processing support for both default versions of task (original, limited task, and the general task
with fewer constraints on element order)

• Acronym and abbreviation support with the new <abbreviated-form> element

• New link grouping abilities available with headers in relationship tables

• OASIS Subcommittee specializations from the learning and machine industry domains (note
that the core toolkit contains only basic processing support for these, but can be extended to
produce related artifacts such as SCORM modules)

To find detailed information about any of these features, see the specification documents at
OASIS. The DITA Adoption Technical Committee has also produced several papers to describe
individual new features. In general, the white papers are geared more towards DITA users and
authors, while the specification is geared more towards tool implementors, though both may be
useful for either audience. The DITA Adoption papers can be found from that committee’s main
web page.

Related information

DITA 1.2 Specification (XHTML)
DITA 1.2 Specification (PDF)

311

http://docs.oasis-open.org/dita/v1.2/spec/DITA1.2-spec.html
http://docs.oasis-open.org/dita/v1.2/spec/DITA1.2-spec.pdf

Reference

DITA 1.2 Specification (DITA source)
OASIS DITA Technical Committee
OASIS DITA Adoption Technical Committee

DITA 1.3 support
DITA Open Toolkit 4.3 provides processing support for the OASIS DITA 1.3
specification. Initial preview support for this specification was added in version 2.0 of the
toolkit; version 2.2 extended this foundation to support key scopes and branch filtering
along with additional DITA 1.3 features.

Because DITA 1.3 is fully backwards compatible with previous DITA DTDs and schemas,
DITA-OT provides the 1.3 materials as the default grammar files for processing. The XML
Catalog resolution maps any references for unversioned DITA document types to the 1.3
versions. All processing ordinarily dependent on the 1.0, 1.1, or 1.2 definitions continues to work
as usual, and any documents that make use of the newer DITA 1.3 elements or attributes will be
supported with specific new processing.

Major features of DITA 1.3

The following DITA 1.3 features are supported in DITA Open Toolkit.

• Scoped keys supported using DITA 1.3 @keyscope attribute

• Branch filtering using <ditavalref> elements in a map

• Support formatting based on new XML Mention elements, such as adding angle brackets
around elements tagged with <xmlelement> and adding @ before attributes tagged with
<xmlatt>

• New highlighting elements <line-through> and <overline>

• Support for profiling based on @deliveryTarget attribute

• Support for the new @orient attribute for rotating tables

• Profile (filter or flag) based on groups within profiling attributes

• @keyref and related key referencing attributes supported on <object>

• New in-topic link syntax using . in place of the topic ID: #./figure

• Support for additional new elements, such as the <div> element for grouping

• Support @cascade attribute in maps (processing defaults to the value merge, which is the
default cascade operation described by the DITA specification)

Note: For the latest status information on DITA 1.3-related features and fixes, see the DITA
1.3 label in the GitHub issues tracker.

Related information

DITA 1.3 Part 3 latest errata version: All-Inclusive Edition (HTML)
DITA 1.3 Part 3 latest errata version: All-Inclusive Edition (PDF)
DITA Version 1.3 Errata 01 (Distribution ZIP of the DITA source)
OASIS DITA Technical Committee
OASIS DITA Adoption Technical Committee

312

http://docs.oasis-open.org/dita/v1.2/spec/DITA1.2-spec.zip
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=dita
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=dita-adoption
http://docs.oasis-open.org/dita/dita/v1.3/errata01/os/complete/part1-base/archSpec/base/keyScopes.html
http://docs.oasis-open.org/dita/dita/v1.3/errata01/os/complete/part1-base/archSpec/base/branch-filtering.html
http://docs.oasis-open.org/dita/dita/v1.3/errata01/os/complete/part1-base/archSpec/base/usage-of-conditional-processing-attributes.html
http://docs.oasis-open.org/dita/dita/v1.3/errata01/os/complete/part1-base/archSpec/base/example-how-cascade-att-functions.html
https://github.com/dita-ot/dita-ot/issues?q=label%3A%22DITA+1.3%22
https://github.com/dita-ot/dita-ot/issues?q=label%3A%22DITA+1.3%22
http://docs.oasis-open.org/dita/dita/v1.3/dita-v1.3-part3-all-inclusive.html
http://docs.oasis-open.org/dita/dita/v1.3/dita-v1.3-part3-all-inclusive.pdf
http://docs.oasis-open.org/dita/dita/v1.3/errata01/os/complete/part3-all-inclusive/dita-v1.3-errata01-os-part3-all-inclusive-complete-dita.zip
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=dita
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=dita-adoption

DITA specification support

DITA 2.0 preview support
DITA Open Toolkit 4.3 provides a preview of features for the upcoming OASIS DITA
2.0 specification. This preliminary processing support is provided on the basis of the
latest drafts of the DITA 2.0 DTD and RELAX NG grammar files from OASIS (as of
January 22, 2024).

DITA documents that reference the draft grammar files can be parsed, and where features overlap
with DITA 1.3, those features will work as expected.

DITA-OT 3.5

DITA-OT 3.5 provided an initial preview of DITA 2.0 features.

• The new <include> element can be used to reference text or XML content from other
files. In addition to the processing mandated by the specification, DITA-OT also supports the
character set definition and line range extraction options previously provided for <coderef>
elements (see Extended codeblock processing on page 318).

• The new @specializations attribute, which replaces the DITA 1.x @domains attribute,
can now be used as an alternative method of declaring specialized attributes.

• The @outputclass attribute can now be specified as a flagging behavior in DITAVAL
files. This allows you to flag an element with a CSS class keyword that will be added to the
@class attribute value in the generated HTML. Output classes allow you to pick up pre-
defined styles from existing web frameworks, and are more easily overridden with custom
CSS files than the inline @style attributes generated by DITA 1.x flagging options such as
@color and @backcolor.

• Titles can now be specified on simple tables, and <simpletable> entries now support row
and column spanning attributes.

• Where DITA 1.x defined conflicting @class values for <linktext>, <shortdesc>,
and <searchtitle> in maps and topics, the new draft of DITA 2.0 uses the topic-based
@class value in all cases. Processing is updated to recognize the updated value when these
elements are used in maps.

DITA-OT 3.6

DITA-OT 3.6 added support for additional DITA 2.0 features.

• Where earlier DITA versions relied on the <object> element to embed media in DITA
source files, DITA 2.0 provides new <audio> and <video> elements that correspond to
their HTML5 equivalents.

• For HTML5 compatibility, the new emphasis domain adds support for the and
 elements in addition to the existing and <i> elements in the highlighting domain.

• The troubleshooting domain has been updated with additional constructs that can be used to
provide detailed diagnostic information.

• Several obsolete elements and attributes have been removed from DITA 2.0, including:

• <boolean>

• <data-about>

313

Reference

• <indextermref>

• @alt on .</p>
<image href="test.jpg" placement="break">
 <alt>Alt</alt>
</image>
<fig>
 <title>Title</title>
 <image href="test.jpg">
 <alt>Alt</alt>
 </image>
</fig>

Key references

Keys can be referenced using standard Markdown syntax for shortcut reference links:

[key]
[link text][key]
![image-key]

<xref keyref="key"/>
<xref keyref="key">link text</xref>
<image keyref="image-key"/>

Inline

The following inline elements are supported:

bold
italic
`code`
~~strikethrough~~

bold
<i>italic</i>
<codeph>code</codeph>
<ph status="deleted">strikethrough</ph>

353

https://spec.commonmark.org/0.30/#shortcut-reference-link

Reference

Lists

Standard Markdown syntax is used for both ordered (numbered) and unordered (bulleted)
lists.

Unordered list items can be marked up using either asterisks “*” or hyphens “-” as list markers:

* one
* two
 - three
 - four

 one
 two

 three
 four

Ordered lists use either numbers or number signs “#”, followed by a period:

1. one
2. two
 #. three
 #. four

 one
 two

 three
 four

Note: Markdown DITA supports both loose and tight list spacing (with no blank
lines between list items). MDITA treats all lists as loose, and wraps each list item in a
paragraph (<p>item</p>).

Definition lists use the PHP Markdown Extra format with a single-line term followed by a colon
and the definition:

Term
: Definition.

<dl>
 <dlentry>
 <dt>Term</dt>
 <dd>Definition.</dd>
 </dlentry>
</dl>

Each definition list entry must have only one term and contain only inline content.

354

https://spec.commonmark.org/0.30/#tight
https://spec.commonmark.org/0.30/#loose
https://michelf.com/projects/php-markdown/extra/#def-list

Markdown formats

Metadata

A YAML metadata block as defined in the pandoc_metadata_block extension can be
used to specify metadata elements for the DITA prolog.

The supported elements are:

• author

• source

• publisher

• permissions

• audience

• category

• keyword

• resourceid

Any unrecognized keys are output using the <data> element.

author:
 - Author One
 - Author Two
source: Source
publisher: Publisher
permissions: Permissions
audience: Audience
category: Category
keyword:
 - Keyword1
 - Keyword2
resourceid:
 - Resourceid1
 - Resourceid2
workflow: review

Sample with YAML header

<title>Sample with YAML header</title>
<prolog>
 <author>Author One</author>
 <author>Author Two</author>
 <source>Source</source>
 <publisher>Publisher</publisher>
 <permissions view="Permissions"/>
 <metadata>
 <audience audience="Audience"/>
 <category>Category</category>
 <keywords>
 <keyword>Keyword1</keyword>
 <keyword>Keyword2</keyword>
 </keywords>
 </metadata>
 <resourceid appid="Resourceid1"/>
 <resourceid appid="Resourceid2"/>
 <data name="workflow" value="review"/>
</prolog>

MDITA syntax
In 2017, the Markdown plug-in was superseded by the LwDITA plug-in, which was
bundled with DITA-OT 3.0, and added new formats for Lightweight DITA. The mdita

355

https://www.yaml.org/
https://pandoc.org/MANUAL.html#extension-yaml_metadata_block
https://docs.oasis-open.org/dita/LwDITA/v1.0/cn01/LwDITA-v1.0-cn01.html

Reference

format implements the subset of Markdown features proposed in the latest specification
drafts, but differs in some ways from the original Markdown DITA format.

To apply the stricter LwDITA-specific processing to a Markdown topic, create a topic reference
in your map and set the @format attribute to mdita:

<map>
 <topicref href="mdita-topic.md" format="mdita"/>
</map>

In this case, the first paragraph in the topic is treated as a short description, and tables are
converted to DITA <simpletable> elements.

The MDITA format uses CommonMark as the underlying markup language. MDITA files must
be UTF-8 encoded.

The MDITA parser processes topics according to the MDITA “Extended profile” proposed for
LwDITA. The "Core profile" can be enabled for custom parser configurations.

The following Markdown constructs are parsed differently when the @format attribute is set to
mdita.

Titles and document structure

The first heading level generates a topic and the second heading level a section:

Topic title

Section title

<topic id="topic_title">
 <title>Topic title</title>
 <body>
 <section>
 <title>Section title</title>
 </section>
 </body>
</topic>

The ID is generated automatically from the title content.

Topic content

The first paragraph is treated as a <shortdesc> element.

Topic title

First paragraph.

Second paragraph.

<topic id="topic_title">
 <title>Topic title</title>
 <shortdesc>First paragraph.</shortdesc>
 <body>
 <p>Second paragraph.</p>
 </body>
</topic>

356

https://commonmark.org/

Markdown formats

Tables

Tables use the MultiMarkdown table extension format:

First Header	Second Header	Third Header
Content	_Cell_	Cell
Content	**Cell**	Cell

Tables in MDITA files are converted to DITA <simpletable> elements:

<simpletable>
 <sthead>
 <stentry>
 <p>First Header</p></stentry>
 <stentry>
 <p>Second Header</p></stentry>
 <stentry>
 <p>Third Header</p></stentry>
 </sthead>
 <strow>
 <stentry>
 <p>Content</p></stentry>
 <stentry>
 <p><i>Cell</i></p></stentry>
 <stentry>
 <p>Cell</p></stentry>
 </strow>
 <strow>
 <stentry>
 <p>Content</p></stentry>
 <stentry>
 <p>Cell</p></stentry>
 <stentry>
 <p>Cell</p></stentry>
 </strow>
</simpletable>

Note Cell alignment information is not preserved, as the @align attribute is are not
available for <simpletable> elements.

Table cells may only contain inline content.

MDITA map syntax

DITA maps can be written in MDITA using standard Markdown syntax for links and
lists.

Note: Requires DITA-OT 4.1 or newer.

In MDITA, maps use the file name extension mditamap to define the file as a map:

Map title

- [Topic title](topic.md)
 - [Nested title](nested.md)

<map>
 <title>Map Title</title>
 <topicref href="topic.dita" navtitle="Topic title">
 <topicref href="nested.dita" navtitle="Nested title"/>
 </topicref>
</map>

In MDITA, both ordered and unordered list items create <topicref> elements.

357

https://fletcherpenney.net/multimarkdown/

Reference

Common syntax

The following common Markdown constructs are processed in the same way for both
mdita and markdown topics.

Hard line breaks

A line break that is preceded by two or more spaces is parsed as a hard line break.
Because DITA doesn’t have a
 element for line break, hard line breaks are
converted into <?linebreak?> processing instructions.

foo··
baz

<p>foo<?linebreak?>baz</p>

The LwDITA plug-in contains extensions for HTML5 and PDF outputs to generate line breaks.

Links

The format of local link targets is detected based on file name extension. The following
extensions are treated as DITA files:

extension format

.dita dita

.xml dita

.md markdown

.markdown markdown

All other link targets detect the format from the file name extension and are treated as non-
DITA files. Absolute link targets are treated as external scope links:

[Markdown](test.md)
[DITA](test.dita)
[HTML](test.html)
[External](http://www.example.com/test.html)

<xref href="test.md">Markdown</xref>
<xref href="test.dita">DITA</xref>
<xref href="test.html" format="html">HTML</xref>
<xref href="http://www.example.com/test.html" format="html" scope="external">External</
xref>

Links to DITA or Markdown files use the URI-based addressing as defined in the DITA
specification, not HTML5 linking. This means that links to non-topic elements follow the DITA
fragment identifier syntax:

[Section](filename.md#topicID/sectionID)

<xref href="filename.md#topicID/sectionID">Section</xref>

358

http://docs.oasis-open.org/dita/dita/v1.3/errata02/os/complete/part3-all-inclusive/archSpec/base/uri-based-addressing.html
http://docs.oasis-open.org/dita/dita/v1.3/errata02/os/complete/part3-all-inclusive/archSpec/base/uri-based-addressing.html#uri-based-addressing__non-topic-with-uri

Markdown formats

Images

Images used in inline content are processed with inline placement. If a block-level image
contains a title, it is treated as an image wrapped in a figure element:

An inline ![Alt](test.jpg).

![Alt](test.jpg)

![Alt](test.jpg 'Title')

<p>An inline <image href="test.jpg"><alt>Alt</alt></image>.</p>
<image href="test.jpg" placement="break">
 <alt>Alt</alt>
</image>
<fig>
 <title>Title</title>
 <image href="test.jpg">
 <alt>Alt</alt>
 </image>
</fig>

Key references

Keys can be referenced using standard Markdown syntax for shortcut reference links:

[key]
[link text][key]
![image-key]

<xref keyref="key"/>
<xref keyref="key">link text</xref>
<image keyref="image-key"/>

Inline

The following inline elements are supported:

bold
italic
`code`
~~strikethrough~~

bold
<i>italic</i>
<codeph>code</codeph>
<ph status="deleted">strikethrough</ph>

359

https://spec.commonmark.org/0.30/#shortcut-reference-link

Reference

Lists

Standard Markdown syntax is used for both ordered (numbered) and unordered (bulleted)
lists.

Unordered list items can be marked up using either asterisks “*” or hyphens “-” as list markers:

* one
* two
 - three
 - four

 one
 two

 three
 four

Ordered lists use either numbers or number signs “#”, followed by a period:

1. one
2. two
 #. three
 #. four

 one
 two

 three
 four

Note: Markdown DITA supports both loose and tight list spacing (with no blank
lines between list items). MDITA treats all lists as loose, and wraps each list item in a
paragraph (<p>item</p>).

Definition lists use the PHP Markdown Extra format with a single-line term followed by a colon
and the definition:

Term
: Definition.

<dl>
 <dlentry>
 <dt>Term</dt>
 <dd>Definition.</dd>
 </dlentry>
</dl>

Each definition list entry must have only one term and contain only inline content.

360

https://spec.commonmark.org/0.30/#tight
https://spec.commonmark.org/0.30/#loose
https://michelf.com/projects/php-markdown/extra/#def-list

Markdown formats

Metadata

A YAML metadata block as defined in the pandoc_metadata_block extension can be
used to specify metadata elements for the DITA prolog.

The supported elements are:

• author

• source

• publisher

• permissions

• audience

• category

• keyword

• resourceid

Any unrecognized keys are output using the <data> element.

author:
 - Author One
 - Author Two
source: Source
publisher: Publisher
permissions: Permissions
audience: Audience
category: Category
keyword:
 - Keyword1
 - Keyword2
resourceid:
 - Resourceid1
 - Resourceid2
workflow: review

Sample with YAML header

<title>Sample with YAML header</title>
<prolog>
 <author>Author One</author>
 <author>Author Two</author>
 <source>Source</source>
 <publisher>Publisher</publisher>
 <permissions view="Permissions"/>
 <metadata>
 <audience audience="Audience"/>
 <category>Category</category>
 <keywords>
 <keyword>Keyword1</keyword>
 <keyword>Keyword2</keyword>
 </keywords>
 </metadata>
 <resourceid appid="Resourceid1"/>
 <resourceid appid="Resourceid2"/>
 <data name="workflow" value="review"/>
</prolog>

361

https://www.yaml.org/
https://pandoc.org/MANUAL.html#extension-yaml_metadata_block

Reference

Format comparison
Although the original Markdown DITA format and the MDITA format for LwDITA share
some common syntax, there are several differences to consider when choosing which
format to use.

• In 2015, the original DITA-OT Markdown plug-in introduced a series of conventions to
convert Markdown content to DITA, and vice-versa. This Markdown flavor was called
“Markdown DITA”. The markdown format adds several complementary constructs to
represent DITA content in Markdown, beyond those proposed for the MDITA format in the
Lightweight DITA specification drafts.

• In 2017, the Markdown plug-in was superseded by the LwDITA plug-in, which was bundled
with DITA-OT 3.0, and added new formats for Lightweight DITA. The mdita format
implements the subset of Markdown features proposed in the latest specification drafts, but
differs in some ways from the original Markdown DITA format.

The following table provides an overview of differences between the markdown and mdita
formats.

Features Markdown DITA MDITA (LwDITA)

DITA map @format attribute markdown or md mdita

LwDITA – #

First ¶ Body ¶ Short description

Subheadings Nested topics Sections

Topic IDs Special attributes or title Generated from title

Output class Special attributes block –

Profiling attributes Special attributes block –

Topic types Special attributes block –

Schemas YAML frontmatter –

Tables OASIS exchange table model 1 1 DITA <simpletable>

Cell alignment # –

Sections Defined via attributes –

Examples Defined via attributes –

Notes MkDocs Material admonitions –

Markdown maps Map schema .mditamap extension

Maps: topic sequences OL in Markdown map –

Maps: key definitions Link reference definition –

Maps: reltables MultiMarkdown tables with links –

Key references in topics # Shortcut reference links # Shortcut reference links

List spacing loose or tight (no blank lines) loose only (¶ per item)

Raw DITA # –

1 https://www.oasis-open.org/specs/tm9901.html

362

https://daringfireball.net/projects/markdown/
https://docs.oasis-open.org/dita/LwDITA/v1.0/cn01/
https://docs.oasis-open.org/dita/LwDITA/v1.0/cn01/
https://spec.commonmark.org/0.30/#loose
https://spec.commonmark.org/0.30/#tight
https://spec.commonmark.org/0.30/#loose
https://www.oasis-open.org/specs/tm9901.html

Markdown formats

Markdown schemas
Starting with version 5.0 of the LwDITA plug-in, the MarkdownReader class supports
a new $schema key in the YAML front matter block. This key can be used to define
parsing options in topic files for more control over how Markdown content is converted
to DITA.

Note: Requires DITA-OT 4.1 or newer.

$schema: urn:oasis:names:tc:dita:xsd:concept.xsd

Concept title

Shortdesc content.

Body content.

The $schema value is a URI that is mapped to a parser configuration. This defines how
the document should be parsed, i.e. which Markdown flavor it uses. The Markdown schema
definition is similar to an XML document type declaration or <?xml-model?> processing
instruction where the document defines how it should be optionally validated.

Note: The schema URI resembles a reference to an XML Schema Definition or
RELAX NG schema, but no validation is currently performed.

The $schema key must be the first key in the YAML header.

The following schemas are built in to the org.lwdita plug-in.

DITA topic

• urn:oasis:names:tc:dita:xsd:topic.xsd

• urn:oasis:names:tc:dita:xsd:topic.rng

DITA concept

• urn:oasis:names:tc:dita:xsd:concept.xsd

• urn:oasis:names:tc:dita:xsd:concept.rng

DITA task

• urn:oasis:names:tc:dita:xsd:task.xsd

• urn:oasis:names:tc:dita:xsd:task.rng

DITA reference

• urn:oasis:names:tc:dita:xsd:reference.xsd

• urn:oasis:names:tc:dita:xsd:reference.rng

DITA map

• urn:oasis:names:tc:dita:xsd:map.xsd

363

Reference

• urn:oasis:names:tc:dita:xsd:map.rng

Lightweight DITA topic extended profile

• urn:oasis:names:tc:mdita:xsd:topic.xsd

• urn:oasis:names:tc:mdita:rng:topic.rng

• urn:oasis:names:tc:mdita:extended:xsd:topic.xsd

• urn:oasis:names:tc:mdita:extended:rng:topic.rng

Lightweight DITA topic core profile

• urn:oasis:names:tc:mdita:core:xsd:topic.xsd

• urn:oasis:names:tc:mdita:core:rng:topic.rng

Custom schemas
You can create a custom plug-in to set different configuration options for Markdown
parsing and conversion to DITA. Custom Markdown schema configurations can be
defined using the Java ServiceLoader class.

The service type interface com.elovirta.dita.markdown.SchemaProvider has two
methods:

• isSupportedSchema(URI) — check whether schema URI is supported by this provider.

• createMarkdownParser(URI) — create MarkdownParser instance for given
schema. We suggest returning a configured MarkdownParserImpl instance.

364

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/ServiceLoader.html
https://github.com/jelovirt/org.lwdita/blob/master/src/main/java/com/elovirta/dita/markdown/SchemaProvider.java
https://github.com/jelovirt/org.lwdita/blob/master/src/main/java/com/elovirta/dita/markdown/MarkdownParser.java
https://github.com/jelovirt/org.lwdita/blob/master/src/main/java/com/elovirta/dita/markdown/MarkdownParserImpl.java

Markdown formats

Example

Sample customization for urn:acme:dita:custom schema.

Create a src/main/java/com/acme/AcmeSchemaProvider.java class that extends
SchemaProvider to define a scheme and what customization options it uses:

package com.acme;

import com.elovirta.dita.markdown.DitaRenderer;
import com.elovirta.dita.markdown.MarkdownParser;
import com.elovirta.dita.markdown.MarkdownParserImpl;
import com.elovirta.dita.markdown.SchemaProvider;
import com.vladsch.flexmark.ext.abbreviation.AbbreviationExtension;
import com.vladsch.flexmark.ext.anchorlink.AnchorLinkExtension;
import com.vladsch.flexmark.ext.attributes.AttributesExtension;
import com.vladsch.flexmark.ext.autolink.AutolinkExtension;
import com.vladsch.flexmark.ext.definition.DefinitionExtension;
import com.vladsch.flexmark.ext.footnotes.FootnoteExtension;
import com.vladsch.flexmark.ext.gfm.strikethrough.StrikethroughSubscriptExtension;
import com.vladsch.flexmark.ext.ins.InsExtension;
import com.vladsch.flexmark.ext.jekyll.tag.JekyllTagExtension;
import com.vladsch.flexmark.ext.superscript.SuperscriptExtension;
import com.vladsch.flexmark.ext.tables.TablesExtension;
import com.vladsch.flexmark.ext.yaml.front.matter.YamlFrontMatterExtension;
import com.vladsch.flexmark.parser.Parser;
import com.vladsch.flexmark.util.data.MutableDataSet;

import java.net.URI;

import static java.util.Arrays.asList;

public class AcmeSchemaProvider implements SchemaProvider {
 private static final URI SCHEMA = URI.create("urn:acme:dita:custom.xsd");

 @Override
 public boolean isSupportedSchema(URI schema) {
 return SCHEMA.equals(schema);
 }

 @Override
 public MarkdownParser createMarkdownParser(URI schema) {
 return new MarkdownParserImpl(new MutableDataSet()
 // See https://github.com/vsch/flexmark-java/wiki/Extensions
 .set(Parser.EXTENSIONS, asList(
 AbbreviationExtension.create(),
 AnchorLinkExtension.create(),
 AttributesExtension.create(),
 FootnoteExtension.create(),
 InsExtension.create(),
 JekyllTagExtension.create(),
 SuperscriptExtension.create(),
 TablesExtension.create(),
 AutolinkExtension.create(),
 YamlFrontMatterExtension.create(),
 DefinitionExtension.create(),
 StrikethroughSubscriptExtension.create()))
 .set(DefinitionExtension.TILDE_MARKER, false)
 .set(TablesExtension.COLUMN_SPANS, true)
 .set(TablesExtension.APPEND_MISSING_COLUMNS, false)
 .set(TablesExtension.DISCARD_EXTRA_COLUMNS, true)
 .set(TablesExtension.HEADER_SEPARATOR_COLUMN_MATCH, true)
 // See https://github.com/jelovirt/org.lwdita/wiki/Custom-schemas
 .set(DitaRenderer.FIX_ROOT_HEADING, false)
 .set(DitaRenderer.SHORTDESC_PARAGRAPH, false)
 .set(DitaRenderer.ID_FROM_YAML, false)
 .set(DitaRenderer.LW_DITA, false)
 .set(DitaRenderer.SPECIALIZATION, false)
 .set(DitaRenderer.SPECIALIZATION_CONCEPT, false)
 .set(DitaRenderer.SPECIALIZATION_TASK, false)
 .set(DitaRenderer.SPECIALIZATION_REFERENCE, false)
 .toImmutable());
 }
}

365

Reference

To make AcmeSchemaProvider discoverable, create a provider
configuration file src/test/resources/META-INF/services/
com.elovirta.dita.markdown.SchemaProvider:

com.acme.AcmeSchemaProvider

A sample project is available in the org.lwdita-sample GitHub project repository. It contains a
Gradle build to compile the code and package it into a DITA-OT plug-in.

The following configuration options can be specified in custom schemas:

Parsing

Static Field Default Description

DitaRenderer.FIX_ROOT_HEADINGfalse If root heading is missing,
generate based on title key
from YAML header or filename.

DitaRenderer.RAW_DITA true Support raw DITA in Markdown.

Conversion to DITA

Static Field Default Description

DitaRenderer.SHORTDESC_PARAGRAPHfalse Convert first paragraph to
shortdesc.

DitaRenderer.TIGHT_LIST true Support tight lists.

DitaRenderer.ID_FROM_YAML false Use id key from YAML header for
topic @id.

DitaRenderer.LW_DITA false Convert to XDITA instead
of DITA. Deprecated, use
DitaRenderer.MDITA_EXTENDED_PROFILE
instead.

DitaRenderer.SPECIALIZATIONfalse Convert to concept/task/reference
if root heading has matching
class.

DitaRenderer.SPECIALIZATION_CONCEPTfalse Convert to DITA concept.

DitaRenderer.SPECIALIZATION_TASKfalse Convert to DITA task.

DitaRenderer.SPECIALIZATION_REFERENCEfalse Convert to DITA concept.

DitaRenderer.MDITA_CORE_PROFILEfalse Parse as MDITA core profile and
convert to XDITA.

DitaRenderer.MDITA_EXTENDED_PROFILEfalse Parse as MDITA extended profile
and convert to XDITA.

DitaRenderer.MAP false Convert to DITA map.

366

https://github.com/jelovirt/org.lwdita-sample

License Information

Chapter 35 License Information

DITA Open Toolkit is released under the Apache License, Version 2.0.

Note: For information on the terms and conditions for use, reproduction, and distribution of
DITA Open Toolkit, refer to the Apache License 2.0.

Third-party software..367

Third-party software
DITA Open Toolkit uses third-party software components to provide certain features in
the core toolkit, Java API, and bundled plug-ins.

DITA-OT 4.3

DITA-OT core processing uses the following third-party software:

Software Version License

Ant 1.10.15 Apache License 2.0

Apache Commons Codec 1.10 Apache License 2.0

Apache Commons IO 2.19.0 Apache License 2.0

Apache XML Commons Resolver 1.2 Apache License 2.0

Guava 33.4.8-jre Apache License 2.0

ICU for Java (ICU4J) 77.1 ICU License

Jackson data binding library 2.19.0 Apache License 2.0

Logback Classic Module 1.5.18 Eclipse Public License 1.0, GNU Lesser General
Public License 2.1

Saxon-HE 12.7 Mozilla Public License 1.0

Simple Logging Facade for Java
(SLF4J)

2.0.17 MIT License

Xerces 2.12.2 Apache License 2.0

XML APIs 1.4.01 Apache License 2.0, W3C Document License

XML Resolver 5.3.3 Apache License 2.0

Note: The XML APIs library contains source code for SAX and DOM APIs, which each have
their own licenses.

PDF plug-in

The org.dita.pdf2 plug-in relies on additional third-party software to generate PDF output:

367

https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0
http://source.icu-project.org/repos/icu/icu/tags/release-57-1/LICENSE
https://www.apache.org/licenses/LICENSE-2.0
http://www.eclipse.org/legal/epl-v10.html
https://www.gnu.org/licenses/old-licenses/lgpl-2.1.html
https://www.gnu.org/licenses/old-licenses/lgpl-2.1.html
https://www.mozilla.org/media/MPL/1.1/index.0c5913925d40.txt
https://opensource.org/licenses/mit-license.php
https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0
https://www.w3.org/Consortium/Legal/2002/copyright-documents-20021231
https://www.apache.org/licenses/LICENSE-2.0

Reference

Software Version License

Apache Commons Logging 1.0.4 Apache License 2.0

Apache XML Graphics 2.11 Apache License 2.0

Batik 1.13 Apache License 2.0

FOP 2.11 Apache License 2.0

368

https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0

DITA and DITA-OT resources

Chapter 36 DITA and DITA-OT resources

In addition to the DITA Open Toolkit documentation, there are other resources about
DITA and DITA-OT that you might find helpful.

Web-based resources... 369
Books... 370
Glossary... 371

Web-based resources
There are many vital DITA resources online, including the DITA Users group and the
DITA-OT project website at dita-ot.org.

dita-ot.org The DITA-OT project website provides
information about the latest toolkit releases,
including download links, release notes, and
documentation for recent DITA-OT versions.

DITA Users group The original dita-users group was founded
in 2004 as a Yahoo! Group and moved to
Groups.io in November 2019. The mailing
list addresses the needs of DITA users at all
levels of experience, from beginners to experts,
and serves as a vital resource for the DITA
community.

DITA-OT Discussions The DITA-OT Discussions forum on GitHub
is a collaborative communication platform
that allows members of the community to
ask questions, share suggestions, upvote
discussions to signal support, and mark
questions as answered.

DITA-OT Users group archive From 2013 to 2024, the DITA-OT Users group
served as a general interest DITA-OT mailing
list, for questions ranging from installation and
getting started to specific overrides, plug-ins,
and customizations. (Archived in favor of the
DITA-OT Discussions forum.)

DITA-OT project archive The DITA-OT project archive at dita-
archive.xml.org provides news about earlier
toolkit releases, and release notes for legacy
versions.

DITA Technical Committee The OASIS DITA Technical Committee
develops the DITA standard.

369

https://www.dita-ot.org
https://groups.io/g/dita-users
https://github.com/orgs/dita-ot/discussions
https://groups.google.com/d/forum/dita-ot-users
http://dita-archive.xml.org/wiki/the-dita-open-toolkit
http://www.oasis-open.org/committees/dita/

Reference

Books
Several DITA-related publications include information on configuring and customizing
DITA Open Toolkit with detailed examples on creating custom plug-ins for PDF output.

DITA for Print: A DITA Open Toolkit Workbook (Second Edition, 2017)

Authored by Leigh W. White, DITA Specialist at IXIASOFT, and published by XML Press,
DITA for Print walks readers through developing a PDF customization from scratch.

Here is an excerpt from the back cover:

DITA for Print is for anyone who wants to learn how to create PDFs using the DITA
Open Toolkit without learning everything there is to know about XSL-FO, XSLT, or
XPath, or even about the DITA Open Toolkit itself. DITA for Print is written for non-
programmers, by a non-programmer, and although it is written for people who have a
good understanding of the DITA standard, you don’t need a technical background to
get custom PDFs up and running quickly.

This is an excellent, long-needed resource that was initially developed in 2013 for DITA-OT 1.8.

The second edition has been revised to cover DITA Open Toolkit Version 2, including
customizing the DITA 1.3 troubleshooting topic type, localization strings, bookmarks, and the
new back-cover functionality.

Important:

The first edition of DITA for Print recommended copying entire files from the PDF2 plug-in
to your custom plug-in. The DITA-OT project — and the second edition of the book — do not
recommend this practice.

Instead, you should copy only the specific attribute sets and templates that you want to
override. Following this practice will more cleanly isolate your customizations from the
DITA-OT code, which will make it easier for you to update your plug-ins to work with future
versions of DITA-OT.

DITA for Practitioners: Volume 1, Architecture and Technology (2012)

Authored by Eliot Kimber and published by XML Press, this seminal resource contains a chapter
dedicated to DITA Open Toolkit: “Running, Configuring, and Customizing the Open Toolkit”.
In addition to a robust overview of DITA-OT customization and extension, the chapter contains
a detailed example of customizing a PDF plug-in to specify 7" × 10" paper size and custom fonts
for body text and headers.

The DITA-OT chapter in DITA for Practitioners: Volume 1 was written for DITA-OT 1.5.4,
which was the latest stable version at the time it was written.

370

DITA and DITA-OT resources

Glossary
Certain terms have particular meaning in the context of the DITA Open Toolkit project.

argument

Required parameter passed to the Ant process or dita command.

DITA Open Toolkit

The open-source publishing engine for content authored in the Darwin Information
Typing Architecture.

DITA-OT

Note: Treat as a proper noun; do not precede with the definite article.

DOST

Note: Deprecated acronym for “DITA Open Source Toolkit”. Use DITA-OT instead.

extension point

Pre-defined interface that can be added to a plug-in to allow other plug-ins to extend or
customize portions of its functionality. An extendable feature is defined by declaring
an <extension-point> element in the plugin.xml file. Other plug-ins can then
override the default behavior by defining custom code that runs when this extension point
is called.

option

Discretionary parameter passed to the Ant process or dita command.

output format

Deliverable file or set of files containing all of the transformed content.

371

Reference

parameter

Command-line argument or option passed to the Ant process or dita command.

plug-in

Group of related files that change the default behavior of DITA-OT in some way.

processor

Software that performs a series of operations to transform DITA content from one format
to another.

property

Ant-specific argument or option.

template

Optional <template> elements can be added to plugin.xml files to define XML
or XSL files that integrate DITA-OT extensions. Template files are often named with
a _template suffix, and may be used to create custom extensions, group targets, and
more. Anything contained in the plug-in’s template files is integrated when the plug-in is
installed.

transformation type

Component of a plug-in that defines an output format.

transtype

Note: Abbreviated form of transformation type. Use only to refer to the transtype
parameter of the dita command, or to the <transtype> element in a plugin.xml file
that defines the output format.

variable

Language-specific piece of generated text, most often defined in the files in
org.dita.base/xsl/common.

372

DITA and DITA-OT resources

XSL template

Set of rules in an XSL stylesheet that are applied to nodes that match specific XML
structures.

373

Reference

374

Index

Special Characters

--debug 77
--filter 77
--force 77
--format 75
--help 76
--input 75
--install, See install subcommand
--logfile 77
--output 77
--parameter 77
--plugins, See plugins subcommand
--propertyfile 77
--temp 77
--transtypes, See transtypes subcommand
--uninstall, See uninstall subcommand
--verbose 77
--version, See version subcommand
-d 77
-D 77
-f 75
-h 76
-i 75
-l 77
-o 77
-t 77
-v 77
.ditaotrc file 99
.hhc 24, 307
.hhk 24, 307
.hhp 24, 307
.properties file 45, 109

A

<abbreviated-form> 311
<abstract> 222
Amazon Corretto 11, 29, 31, 203
Ant 172, 289, 367

args.debug 249
build script 68, 81
configuring 99
dita command, benefits of 46
<dita-cmd> 46
<ditafileset> 154
<exec> 46
extending 292
<jar> 172, 173, 174
logging 245
overview 67
parameters 81
<pipeline> 153, 172
pre-processing 158
precedence 99
properties 81, 99
publishing with 67, 67
script 81
<style> 153

targets 158
<xsl:import> 153
<xsl:include> 153
<xslt> 153, 172
See also Saxon

Ant samples 201
ANT_OPTS 281, 285
ant_sample class 201
ant.import 158, 326, 338
Antenna House

change bars 113
DITA XML mention domain 321
local.properties file 100
plug-in 224
plugin generator 190
topic.fo 308
transform.fo2pdf 308
XSL-FO processor 31

Apache Commons Codec 367
Apache Commons IO 367
Apache Commons Logging 368
Apache FOP 368

change bars 113, 208
I18N 89, 103
log files 245
pdf.formatter 90
plug-in 224
plugin generator 190
topic.fo 308
transform.fo2pdf 308
XSL-FO processor 31

Apache licence 367
Apache XML Commons Resolver 367
Apache XML Graphics 368
API 71
Arabic 193
architecture 289, 289
args.artlbl 88, 90, 93
args.bookmap-order 88
args.bookmark.style 88
args.chapter.layout 88
args.copycss 90, 93
args.css 90, 93
args.csspath 90, 93
args.cssroot 91, 94
args.debug 81, 249
args.dita.locale 91, 94
args.draft 81
args.eclipse.provider 91, 96
args.eclipse.symbolic.name 91, 96
args.eclipse.version 91, 97
args.eclipsehelp.country 91, 97
args.eclipsehelp.jar.name 91, 97
args.eclipsehelp.language 91, 97
args.figurelink.style 81
args.filter 82
args.fo.userconfig 88
args.ftr 91, 94
args.gen.default.meta 91, 94

args.gen.task.lbl 82
args.grammar.cache 82
args.hdf 92, 94
args.hdr 92, 94
args.hide.parent.link 92, 95
args.html5.classattr 95
args.html5.contenttarget 95
args.html5.toc 95
args.html5.toc.class 95
args.html5.toc.xsl 95
args.htmlhelp.includefile 92, 96
args.indexshow 92, 95
args.input 82
args.input.dir 43, 46, 79, 82
args.outext 92, 95
args.output.base 82
args.rellinks 82, 83, 104, 228
args.resources 83
args.tablelink.style 83
args.xhtml.classattr 92
args.xhtml.contenttarget 93, 96
args.xhtml.toc 93, 96
args.xhtml.toc.class 93, 96
args.xhtml.toc.xsl 93, 96
args.xsl 93, 95
args.xsl.pdf 88
arguments 75

See also dita command
artlbl, See args.artlbl
@as 227
@audience 321
authoring formats 19

DITA 289, 311
Lightweight DITA 21
Markdown 19, 345
MDITA 345

axf.cmd 88
axf.opt 88

B

Batik 368
@behavior 168
Belarusian 193
bi-directional languages 192
<bookmap> 224
Bootstrap 215
Bosnian 193
branch filters 297, 312, 321
branch-filter 297
build_html5-webfont.xml 178
build-step.branch-filter 83
build-step.chunk 83
build-step.clean-preprocess 84
build-step.clean-temp 84
build-step.coderef 84
build-step.conref 84
build-step.copy-flag 84
build-step.copy-html 84
build-step.copy-image 84
build-step.keyref 84
build-step.map-profile 84

build-step.maplink 84
build-step.mapref 84
build-step.move-meta-entries 84
build-step.normalize-codeblock 84
build-step.profile 84
build-step.topic-profile 85
build-step.topicpull 85
build.xml 67
Bulgarian 193

C

canditopics.list 296
@cascade 101, 312
cascading style sheet, See CSS
Catalan 193
catalog 168

adding languages 187
catalog.xml 186, 187
example 188
extending 170
grammar file resolution 312
import precedence 101
index configuration 186
location 215
referencing 156
xml.catalog.files 216
xml.catalog.path 216

cell-norowborder class 201
cellrowborder class 201
@changebar 113
<char.set> 186
character set 318
Chinese 174, 193, 221
CHM, See HTML Help
<choicetable> 222
@chunk 299

error recovery 316
HTML-based processing 306
root-chunk-override 87
supported methods 299, 316

<cite> 225
classpath

configuration-jar 215
dita command 46, 71
Java 71, 165
logging 246

clean-map 305
clean.temp 85
cli.color 101
<codeblock> 216, 299, 318
<coderef> 299, 318, 318
@collection-type 300
@color 113
command line 101

checking DITA-OT version 33
configuring proxies 285
debugging 249
help 279
increase Java memory 281
local.properties file 100
properties 99

RELAX NG parsing 215
See also dita command

CommonMark 19
configuration properties

cli.color 101
default.cascade 101
default.coderef-charset 101
org.dita.pdf2.i18n.enabled 101
plugin.ignores 101
plugin.order 101
plugindirs 101
registry 101
temp-file-name-scheme 101

@conref 295, 298, 299
resolving 293, 298
support 311

conref.list 296
conrefpush 298
conreftargets.list 296
conserve-memory 85
converting lightweight formats to DITA 19, 21, 26
copy-files 305
@copy-to 298, 298, 318
copytosource.list 296
Croatian 193
CSS

.properties file 109
adding custom 105, 106, 107
bi-directional languages 192
copy to specific location 91, 94, 109
Eclipse Help 24
gen-style 231
HTML 175
HTML Help 24
HTML transforms 175, 306
HTML5 23, 107, 156, 215, 306
@outputclass 301
right-to-left languages 192
web fonts 178
XHTML 27

custom.css 178
custom.xep.config 89
Customization directory 112, 184, 227, 309
customization.dir 89
Czech 193

D

Danish 193
debug-filter 296
debugging 245

args.debug 249
attributes 317
debug-filter preprocess step 296
dita command 77
generate-debug-attributes 86, 277, 283
logging 71
xtrc 317
xtrf 317
See also logging

@default 67, 68
default.cascade 101

default.coderef-charset 101
default.language 85
deinstalling, See uninstalling
deliverables subcommand 76
@deliveryTarget 312
depend.org.dita.pdf2.format 328, 341
depend.org.dita.pdf2.format.post 328, 341
depend.org.dita.pdf2.format.pre 328, 341
depend.org.dita.pdf2.index 329, 341
depend.org.dita.pdf2.init.pre 329, 341
depend.preprocess.chunk.pre 326, 338
depend.preprocess.clean-temp.pre 326, 338
depend.preprocess.coderef.pre 326, 338
depend.preprocess.conref.pre 326, 338
depend.preprocess.conrefpush.pre 326, 339
depend.preprocess.copy-files.pre 327, 339
depend.preprocess.copy-flag.pre 327, 339
depend.preprocess.copy-html.pre 326, 339
depend.preprocess.copy-image.pre 327, 339
depend.preprocess.copy-subsidiary.pre 327,
339
depend.preprocess.debug-filter.pre 327, 339
depend.preprocess.gen-list.pre 328, 339
depend.preprocess.keyref.pre 329, 339
depend.preprocess.maplink.pre 329, 339
depend.preprocess.mappull.pre 329, 339
depend.preprocess.mapref.pre 330, 339
depend.preprocess.move-meta-entries.pre 330,
339
depend.preprocess.post 330, 339
depend.preprocess.pre 330, 339
depend.preprocess.topicpull.pre 331, 339
depend.preprocess2.maps.post 331, 339
depend.preprocess2.maps.pre 331, 339
depend.preprocess2.topics.post 331, 339
depend.preprocess2.topics.pre 331, 339
depend.validate 331, 343
deprecated features

.notetitle classes 220, 224
"bkinfo" demo plug-in 235
args.fo.include.rellinks 228
args.message.file 228
args.odt.img.embed 225
args.odt.include.rellinks 228
artwork-preprocessor.xsl 228
coderef target 222
common-processing-phrase-within-link
template 225
configuration-jar Ant target 215
conref-check target 222
conreffile 222
copy-subsidiary target 225
copy-subsidiary-check target 225
Customization folder 112
demo folder 235
depend.preprocess.copy-subsidiary.pre
extension points 225
disableRelatedLinks 228
displaytext 225
dita.conductor.target 332
dita.empty 228
dita.extname 229

dita.input 229
dita.input.dirname 229
dita.out.map.htmlhelp.* targets 225
dita.out.map.javahelp.* targets 225
dita.out.map.xhtml.toc target 225
dita.resource.dir 228
dita.script.dir 228
dita.specialization.catalog 170, 332
DITAVAL templates 231
dost.class.path 216
dost.class.path property 165, 216
help build target 225
html.file 295
html.list 225
htmlfile 225, 295
image.file 295
image.list 225
imagefile 225, 295
ImgUtils 228
InputMapDir 224
insertVariable.old 228
JavaHelp plug-in 218
keydefs variable 225
KEYREF-FILE 225
keys 225
layout-masters.xml 235
Legacy PDF 228
mode="elementname-fmt" 231
ODT templates, list of 235
otdita2fo_frontend.xsl 228
page-margin-left 229, 238
page-margin-right 229, 238
parameters

args.debug 81
dita.input.valfile 85

PDF localization variables 222
PDF, insertVariable template 225
PDF2 templates, list of 235
plugin.xml, templates key 215
print_transtypes 238
pull-in-title template 225
target 225
tm-area named template 222, 222
TocJS plug-in 213
topic pull templates, list of 235
user.input.dir 224
user.input.file 224
workdir processing instruction 235, 235
XHTML templates, list of 235
XHTML, flagging-related templates 229
xml.catalog.files property 216
XSLT mode, layout-masters-processing 228
XSLT mode, toc-prefix-text 228
XSLT mode, toc-topic-text 228

<desc> 301
@dir 192, 192
DITA

normalized 26
specializations 135, 145, 151, 170, 292, 301, 311

DITA 1.0 290, 311
DITA 1.1 309, 311
DITA 1.2 290, 311

DITA 1.3
@cascade 101
effect on pre-processing 290
Lightweight DITA 21
specification support 312
SVG domain 216
XML mention domain 321

dita command
.properties file 43, 45, 46, 79, 109
args.input.dir 43, 46, 79
arguments list 75
classpath 71
colored console output 101
debugging 249
help 279
Homebrew 37
installing 29
logging 245
migrating Ant scripts 46
normalized DITA 26
parameters 81
PATH environment variable 29
plug-in registry 141
plug-ins 137, 139, 227
project files 49
running from Docker images 59
running from GitHub CI/CD 63
using 35, 41

DITA for Practitioners: Volume 1, Architecture and
Technology 191, 370
DITA for Print 191, 370
DITA maps

dita command example 44
input file 251
PDF file name 90
properties file 45
relative file locations 108
validate 290

DITA specification 23
DITA Technical Committee 369
DITA Users group 369
dita-cmd 46
DITA-OT Users group 369
dita-ot.org 369
<dita:extension> 149, 168, 168
dita.basedir-resource-directory 328, 339
dita.catalog.plugin-info 330, 339
dita.conductor.eclipse.toc.param 327, 343
dita.conductor.html.param 328, 342
dita.conductor.html5.param 329, 342
dita.conductor.html5.toc.param 329, 342
dita.conductor.lib.import 329, 339
dita.conductor.pdf2.formatter.check 328, 341
dita.conductor.pdf2.param 330, 341
dita.conductor.plugin 326, 340
dita.conductor.target 325, 340
dita.conductor.target.relative 326, 340
dita.conductor.transtype.check 331, 340
dita.conductor.xhtml.param 331, 342
dita.conductor.xhtml.toc.param 328, 342
dita.dir 85
dita.html.extensions 328, 340

dita.image.extensions 329, 340
dita.input.valfile 85
dita.list 295
dita.map.eclipse 306
dita.map.eclipse.index.pre 327, 343
dita.map.htmlhelp 307
dita.map.xhtml 306
dita.parser 327, 340
dita.preprocess.conref.param 326, 340
dita.preprocess.debug-filter.param 327, 340
dita.preprocess.map-reader.param 327, 340
dita.preprocess.mappull.param 329, 340
dita.preprocess.mapref.param 330, 340
dita.preprocess.topic-reader.param 327, 340
dita.preprocess.topicpull.param 331, 340
dita.resource.extensions 331, 340
dita.specialization.catalog 331, 340
dita.specialization.catalog.relative 332, 341
dita.temp.dir 85
dita.transtype.print 331, 341
dita.xml.properties 295
dita.xsl.conref 326, 341
dita.xsl.eclipse.plugin 327, 343
dita.xsl.eclipse.toc 327, 343
dita.xsl.html.cover 328, 342
dita.xsl.html5 329, 342
dita.xsl.html5.cover 329, 342
dita.xsl.html5.toc 329, 342
dita.xsl.htmlhelp.map2hhc 328, 343
dita.xsl.htmlhelp.map2hhp 328, 343
dita.xsl.htmltoc 328, 342
dita.xsl.maplink 329, 341
dita.xsl.mappull 329, 341
dita.xsl.mapref 330, 341
dita.xsl.markdown 330, 343
dita.xsl.messages 327, 341
dita.xsl.strings 328, 341
dita.xsl.topicpull 331, 341
dita.xsl.xhtml 328, 342
dita.xsl.xslfo 330, 341
dita.xsl.xslfo.i18n-postprocess 330, 341
dita2dita 26
dita2eclipsehelp 24
dita2html5 23
dita2htmlhelp 24
dita2markdown 25
dita2pdf 23
dita2xhtml 27
<ditafileset> 154
DITAVAL 82, 82

args.filter 82
branch-filter preprocess step 297
change bars 113
copy-files preprocess step 305
debug-filter preprocess step 296
flag-module preprocess step 301
HTML-based formats 306
PDF 308
profile preprocess step 299
template changes in 1.7 231
See also filters, profiling

<ditaval-endprop> 301

<ditaval-prop> 301
<ditaval-startprop> 301
<ditavalref> 312
<div>

args.ftr 91, 94
args.hdf 92, 94
args.hdr 92, 95
div.shortdesc 222
HTML footer 91, 94, 107
HTML <head> 92, 94
HTML header 92, 95, 107
support 312

DocBook 142, 221
Docker images 59, 60
DOST 371
DOTA001F 251
DOTA002F 251
DOTA003F 252
DOTA004F 252
DOTA006W 252
DOTA007E 252
DOTA008E 252
DOTA009E 252
DOTA011W 252
DOTA012W 252
DOTA013F 252
DOTA014W 252
DOTA015F 252
DOTA066F 253
DOTA067W 253
DOTA068W 253
DOTA069F 253
DOTA069W 253
DOTJ005F 253
DOTJ007E 253
DOTJ007I 253
DOTJ007W 253
DOTJ009E 253
DOTJ012F 254
DOTJ013E 254
DOTJ014W 254
DOTJ018I 254
DOTJ020W 254
DOTJ021E 254
DOTJ021W 255
DOTJ022F 255
DOTJ023E 255
DOTJ025E 255
DOTJ026E 255
DOTJ028E 256
DOTJ029I 256
DOTJ030I 256
DOTJ031I 256
DOTJ033E 256
DOTJ034F 256
DOTJ035F 256
DOTJ036W 257
DOTJ037W 257
DOTJ038E 257
DOTJ039E 257
DOTJ040E 257
DOTJ041E 257

DOTJ042E 257
DOTJ043W 258
DOTJ044W 258
DOTJ045I 258
DOTJ046E 258
DOTJ047I 258
DOTJ048I 258
DOTJ049W 258
DOTJ050W 258
DOTJ051E 259
DOTJ052E 259, 318
DOTJ053W 259
DOTJ054E 259
DOTJ055E 259
DOTJ056E 259
DOTJ057E 259
DOTJ058E 259
DOTJ059E 260
DOTJ060W 260
DOTJ061E 260
DOTJ062E 260
DOTJ063E 260
DOTJ064W 260
DOTJ065I 260
DOTJ066E 260
DOTJ067E 260
DOTJ068E 260
DOTJ069E 260
DOTJ070I 261
DOTJ071E 261
DOTJ072E 261
DOTJ073E 261
DOTJ074W 261
DOTJ075W 261
DOTJ076W 261
DOTJ077F 261
DOTJ078F 261
DOTJ079E 261
DOTJ080W 261
DOTJ081W 262
DOTJ082E 262
DOTJ083E 262
DOTJ084E 262
DOTJ085E 262
DOTJ086W 262
DOTJ087W 262
DOTJ088E 262
DOTX001W 262
DOTX002W 262
DOTX003I 262
DOTX004I 262
DOTX005E 263
DOTX006E 263
DOTX007I 263
DOTX008E 263
DOTX008W 263
DOTX009W 263
DOTX010E 264
DOTX011W 264
DOTX012W 264
DOTX013E 264
DOTX014E 265

DOTX015E 265
DOTX016W 265
DOTX017E 265
DOTX018I 265
DOTX019W 266
DOTX020E 266
DOTX021E 266
DOTX022W 266
DOTX023W 266
DOTX024E 266
DOTX025E 266
DOTX026W 266
DOTX027W 266
DOTX028E 267
DOTX029I 267
DOTX030W 267
DOTX031E 267
DOTX032E 267
DOTX033E 267
DOTX034E 267
DOTX035E 268
DOTX036E 268
DOTX037W 268
DOTX038I 268
DOTX039W 268
DOTX040I 268
DOTX041W 268
DOTX042I 268
DOTX043I 269
DOTX044E 269
DOTX045W 269
DOTX046W 269
DOTX047W 269
DOTX048I 269
DOTX049I 269
DOTX050W 269
DOTX052W 270
DOTX053E 270
DOTX054W 270
DOTX055W 270
DOTX056W 270
DOTX057W 270
DOTX058W 271
DOTX060W 271
DOTX061W 271
DOTX062I 271
DOTX063W 271
DOTX064W 271
DOTX065W 271
DOTX066W 272
DOTX067E 272
DOTX068W 272
DOTX069W 272
DOTX070W 272
DOTX071E 272
DOTX071W 272
DOTX072I 272
DOTX073I 272
DOTX074W 272
DOTX075W 272
DOTX076E 273
DOTX077I 273

draft
args.draft 81
<draft> 45
localizing generated text 194
PDF 81, 157

<dt> 225
DTD 151, 311, 312
Dublin Core metadata 208
<dummy> 163
Dutch 193

E

Eclipse Content 221
Eclipse Help 24, 289, 306, 342, 343

See also transformations
Eliot Kimber 191, 370
encoding 318, 318
<endflag> 301
English 192, 193, 194, 221
entry file

broken links, reason for 108
HTML5 306
XHTML 306

environment variables 249
error messages 251
Estonian 193
<example> 219
extending 135
extension points 325

ant.import 326, 338
common 338
creating 168
depend.org.dita.pdf2.format 328, 341
depend.org.dita.pdf2.format.post 328, 341
depend.org.dita.pdf2.format.pre 328, 341
depend.org.dita.pdf2.index 329, 341
depend.org.dita.pdf2.init.pre 329, 341
depend.preprocess.chunk.pre 326, 338
depend.preprocess.clean-temp.pre 326, 338
depend.preprocess.coderef.pre 326, 338
depend.preprocess.conref.pre 326, 338
depend.preprocess.conrefpush.pre 326, 339
depend.preprocess.copy-files.pre 327, 339
depend.preprocess.copy-flag.pre 327, 339
depend.preprocess.copy-html.pre 326, 339
depend.preprocess.copy-image.pre 327, 339
depend.preprocess.copy-subsidiary.pre
327, 339
depend.preprocess.debug-filter.pre 327,
339
depend.preprocess.gen-list.pre 328, 339
depend.preprocess.keyref.pre 329, 339
depend.preprocess.maplink.pre 329, 339
depend.preprocess.mappull.pre 329, 339
depend.preprocess.mapref.pre 330, 339
depend.preprocess.move-meta-entries.pre
330, 339
depend.preprocess.post 330, 339
depend.preprocess.pre 330, 339
depend.preprocess.topicpull.pre 331, 339
depend.preprocess2.maps.post 331, 339

depend.preprocess2.maps.pre 331, 339
depend.preprocess2.topics.post 331, 339
depend.preprocess2.topics.pre 331, 339
depend.validate 331, 343
dita.basedir-resource-directory 328, 339
dita.catalog.plugin-info 330, 339
dita.conductor.eclipse.toc.param 327, 343
dita.conductor.html.param 328, 342
dita.conductor.html5.param 329, 342
dita.conductor.html5.toc.param 329, 342
dita.conductor.lib.import 329, 339
dita.conductor.pdf2.formatter.check 328,
341
dita.conductor.pdf2.param 330, 341
dita.conductor.plugin 326, 340
dita.conductor.target 325, 340
dita.conductor.target.relative 326, 340
dita.conductor.transtype.check 331, 340
dita.conductor.xhtml.param 331, 342
dita.conductor.xhtml.toc.param 328, 342
dita.html.extensions 328, 340
dita.image.extensions 329, 340
dita.map.eclipse.index.pre 327, 343
dita.parser 327, 340
dita.preprocess.conref.param 326, 340
dita.preprocess.debug-filter.param 327,
340
dita.preprocess.map-reader.param 327, 340
dita.preprocess.mappull.param 329, 340
dita.preprocess.mapref.param 330, 340
dita.preprocess.topic-reader.param 327,
340
dita.preprocess.topicpull.param 331, 340
dita.resource.extensions 331, 340
dita.specialization.catalog 331, 340
dita.specialization.catalog.relative 332,
341
dita.transtype.print 331, 341
dita.xsl.conref 326, 341
dita.xsl.eclipse.plugin 327, 343
dita.xsl.eclipse.toc 327, 343
dita.xsl.html.cover 328, 342
dita.xsl.html5 329, 342
dita.xsl.html5.cover 329, 342
dita.xsl.html5.toc 329, 342
dita.xsl.htmlhelp.map2hhc 328, 343
dita.xsl.htmlhelp.map2hhp 328, 343
dita.xsl.htmltoc 328, 342
dita.xsl.maplink 329, 341
dita.xsl.mappull 329, 341
dita.xsl.mapref 330, 341
dita.xsl.markdown 330, 343
dita.xsl.messages 327, 341
dita.xsl.strings 328, 341
dita.xsl.topicpull 331, 341
dita.xsl.xhtml 328, 342
dita.xsl.xslfo 330, 341
dita.xsl.xslfo.i18n-postprocess 330, 341
Eclipse Help 342
HTML 342
HTML Help 342
HTML5 342

init.template 329, 341
org.dita.eclipsehelp 343
org.dita.html5 342
org.dita.htmlhelp 343
org.dita.pdf2 341
org.dita.pdf2.catalog.relative 326, 342
org.dita.pdf2.xsl.topicmerge 330, 342
org.dita.validate 343
overview 325
package.support.email 330, 341
package.support.name 330, 341
package.version 330, 341
plug-in 325
validation 343
XHTML 342
XSLT 334
See also pre-processing

<extension-point> 147

F

<feature> 147
<fig> 298
<figure> 188
@file 147, 334
files

.ditaotrc 99
build.xml 67
config/configuration.properties file 101
local.properties 100
plugin.properties 101

filter-stage 85
filters 297

dita command 75
duplicate conditions 317
map-first pre-processing 201, 290
processing order 293
subject scheme 311
support 312
See also branch filters, DITAVAL

Finnish 193, 238
firstcol class 201
flag-module 301
flagging 231, 301
flagimage.list 296
font-mappings.xml 184
fonts

HTML 175, 178
PDF 89, 103, 184, 187
PDF plugin generator 190

<footer> 107, 180
FOP, See Apache FOP
force-unique 85
<foreign> 301
@format 19, 21, 318, 345
formats , See authoring formats, transformations
formatter 90, 100

See also Antenna House, Apache FOP, RenderX
French 193
<frontmatter> 224
fullditamap.list 296
fullditamapandtopic.list 296

fullditatopic.list 296

G

Gaelic 194
garage samples 201
gen-list 295
generate-debug-attributes 85
generate.copy.outer 86, 108, 256, 257, 259
generated text 192, 193, 194, 198
generated text, adding new 196
generated text, overriding 197
<gentext> 194, 196, 197, 198
German 193
getVariable 194
GitBook 25
GitHub 141, 217, 220
GitHub Actions 63
GitHub Discussions, See
GitHub-Flavored Markdown 25
globalizing 192
Google Group, See DITA-OT Users group
grammar files 101, 311, 312

See also DTD, schema
Greek 193
Guava 367

H

HDITA, See Lightweight DITA
<head> 178, 180
<header> 92, 95, 107
Hebrew 193, 238
Hindi 193
@href 86, 225, 297, 317
hrefditatopic.list 296
hreftargets.list 296
HTML 23, 27, 342

build properties 109
CHM 307
common processing 306
CSS 106, 175, 175
custom plug-in 175, 175, 178
customizing 105
Eclipse Help 306
files outside map directory 108
fonts 175, 178
HTML5 306
JavaScript 175
markup, adding 175
parameters 105
PDF formatting differences 309
various output types 305
XHTML 306
See also HTML5

HTML Help 24, 289, 307, 342, 343
See also transformations

html.list 296
HTML5 23, 93

args.rellinks 83, 104
CSS 23, 106, 107, 156, 215, 306
extension points 342

footers 91, 94, 107
headers 92, 95, 107
JavaScript, adding 180
nav-toc 95, 105, 306
navigation, adding 105
parameters 90
pre-processing 289
related links 83, 104
See also transformations

html5.toc.generate 95
HTTP proxies 285
Hungarian 193

I

I18N 187
org.dita.pdf2.i18n.enabled 89, 103, 238
PDF processing 221
plug-in 172, 174, 184
See also languages

Icelandic 193, 194
ICU for Java (ICU4J) 367
@id

args.eclipse.symbolic.name 97
@conref resolution 298
diagnostic messages 166
plug-in 146, 168
variables, overriding 186

Idiom Technologies 309
IETF BCP 47 85
@if 216
@if:set 216
image 255
image map 269
image.list 296
images 154

copying 305
flagging 301
scaling 317
selecting 154
See also copy-files

in-memory processing 208, 294
index 108

Eclipse Help 306
entries in map file 300
HTML Help 24
indexing domain 309
PDF 184, 186, 187, 308
sorting 192, 193, 292
See also entry file

index-attr.xsl 187
@index:lang 192, 192
<index.group> 186
<indexterm> 225
Indonesian 193, 221, 238
INDX001I 273
INDX002E 273
INDX003E 273
<info> 309
init subcommand 76
init.template 329, 341
input formats, See authoring formats

install subcommand 76
installing 75, 199

check current version 33
DITA-OT 29
Homebrew 37
prerequisites 31

integrator 137
See also plug-ins installing

integrator.xml 188
internationalization, See I18N
ISO 639-1 186, 186, 187
Italian 193

J

Jackson data binding library 367
Japanese 193
Jarno Elovirta 190
Java

Ant 67
ANT_OPTS 281, 285
API 71
architecture 289
chunk 299
classes 77
classpath 71, 165
configuring 99
conrefpush 298
extending 292
extension functions 173
Java Development Kit (JDK) 29, 31
Java Runtime Environment (JRE) 29, 31
local.properties file 100
logging 245, 277
maplink 300
memory 281
move-meta-entries 300
network 285
out of memory 97, 277
plugin.properties 101
precedence 99
processing modules 292
properties 99
required version 283
ServiceLoader 172
temporary file names 101
tools.jar 277
UnsupportedClassVersionError 277
versions 11, 29, 31, 203

JavaHelp 218, 218, 226
JSON project files 55
JVM 283

K

Kazakh 193, 238
keydef 226
keyref 297, 311, 312
@keyscope 312
<keyword> 225
Korean 193, 221

L

language codes 193
languages

adding support for 184, 186, 187, 194, 198
auto-generated strings 309
bi-directional 192
default 85
index sorting 192
ISO 639-1 186, 186, 187
right-to-left 23, 27, 192, 219
supported 192, 221, 238
supported, list of 193

Latvian 193
legacypdf 309
Leigh White 191, 370
 301
license 367
Lightweight DITA 19, 215, 216, 217
line numbering 321
<line-through> 312
<line-through> styles 209
<link> 68, 178, 301
link processing 317
link-crawl 86
<linktext> 300, 301
Linux

Ant 67
colored console output 101
configuring proxies 285
delimiter 82
dita command 35, 41
DITA-OT version 33
gradle 241
help 279
increase Java memory 281
installing DITA-OT 29
plug-in registry checksum 142
rebuilding documentation 241

Lithuanian 193
local.properties file 99, 100
locale 31, 185, 187, 292

See also args.dita.locale, languages
localizing 192
@locktitle 300
Logback Classic Module 367
logback.xml 246
logging 245, 277
LwDITA, See Lightweight DITA

M

macOS 37
Ant 67
colored console output 101
configuring proxies 285
delimiter 82
dita command 35, 41
DITA-OT version 33
gradle 241
help 279
increase Java memory 281

installing DITA-OT 29
plug-in registry checksum 142
rebuilding documentation 241

Malay 193, 238
<map> 297
map processing 317
map-first pre-processing 201, 290
maplink 300
mapref 297
maps, See DITA maps
Markdown 19, 25, 345
Maven Central 71
maxJavaMemory 89
MDITA 345
memory 86, 97, 277, 281, 300
metadata 148

@cascade 101
chunking, effect of 221
connection timed out 285
Lightweight DITA 21
map 26
moving 300
network connection error 285
plug-in 146, 168
processing time, effect on 281
specialization error 257
topic 26

Microsoft HTML Help Workshop 24
migrating 199
Montenegrin 193
move-meta-entries 300

N

@name 68
<nav> 23, 105
nav-toc 95, 105, 306
navtitle 266, 272
<nextCatalog> 215
nocellnorowborder class 201
Norwegian 193
<note> 185, 194, 293
note__body class 201

O

OASIS 9, 170, 289, 369
<object> 312
 301
onlytopic.in.map 86
OpenDocument Text 221
OpenJDK 11, 29, 31, 203
operating system , See Linux, macOS, Windows
Oracle JDK 11, 29, 31, 203
org.dita.base 338
org.dita.eclipsehelp 343
org.dita.html5 178, 342
org.dita.htmlhelp 343
org.dita.index.skip 89
org.dita.pdf2 309, 341
org.dita.pdf2.catalog.relative 326, 342
org.dita.pdf2.chunk.enabled 89

org.dita.pdf2.i18n.enabled 89, 101
org.dita.pdf2.xsl.topicmerge 330, 342
org.dita.validate 343
org.dita.xhtml 342
@orient 312, 321
OS X, See macOS
outditafiles.list 296
outer.control 86
output formats 23
output.dir 86
@outputclass 216, 301, 301, 318
outputFile.base 89
<overline> 312
<overline> styles 209

P

<p> 222, 301
package.support.email 330, 341
package.support.name 330, 341
package.version 330, 341
parallel 87
parallel processing 208
<param> 150, 160, 163, 186, 216
parameters 81

adding 163
args.artlbl 88, 90, 93
args.bookmap-order 88
args.bookmark.style 88
args.chapter.layout 88
args.copycss 90, 93
args.css 90, 93
args.csspath 90, 93
args.cssroot 91, 94
args.debug 81
args.dita.locale 91, 94
args.draft 81, 81
args.eclipse.provider 91, 96
args.eclipse.symbolic.name 91, 96
args.eclipse.version 91, 97
args.eclipsehelp.country 91, 97
args.eclipsehelp.jar.name 91, 97
args.eclipsehelp.language 91, 97
args.figurelink.style 81
args.filter 82
args.fo.userconfig 88
args.ftr 91, 94
args.gen.default.meta 91, 94
args.gen.task.lbl 82
args.grammar.cache 82
args.hdf 92, 94
args.hdr 92, 94
args.hide.parent.link 92, 95
args.html5.classattr 95
args.html5.contenttarget 95
args.html5.toc 95
args.html5.toc.class 95
args.html5.toc.xsl 95
args.htmlhelp.includefile 92, 96
args.indexshow 92, 95
args.input 82
args.input.dir 82

args.outext 92, 95
args.output.base 82
args.rellinks 82
args.resources 83
args.tablelink.style 83
args.xhtml.classattr 92
args.xhtml.contenttarget 93, 96
args.xhtml.toc 93, 96
args.xhtml.toc.class 93, 96
args.xhtml.toc.xsl 93, 96
args.xsl 93, 95
args.xsl.pdf 88
axf.cmd 88
axf.opt 88
build-step.branch-filter 83
build-step.chunk 83
build-step.clean-preprocess 84
build-step.clean-temp 84
build-step.coderef 84
build-step.conref 84
build-step.copy-flag 84
build-step.copy-html 84
build-step.copy-image 84
build-step.keyref 84
build-step.map-profile 84
build-step.maplink 84
build-step.mapref 84
build-step.move-meta-entries 84
build-step.normalize-codeblock 84
build-step.profile 84
build-step.topic-profile 85
build-step.topicpull 85
clean.temp 85
conserve-memory 85
custom.xep.config 89
customization.dir 89
default.language 85
dita.dir 85
dita.input.valfile 85
dita.temp.dir 85
filter-stage 85
force-unique 85
generate-debug-attributes 85
generate.copy.outer 86
html5.toc.generate 95
link-crawl 86
maxJavaMemory 89
nav-toc 95
onlytopic.in.map 86
org.dita.index.skip 89
org.dita.pdf2.chunk.enabled 89
org.dita.pdf2.i18n.enabled 89
outer.control 86
output.dir 86
outputFile.base 89
parallel 87
pdf.formatter 90
processing-mode 87
publish.required.cleanup 90
remove-broken-links 87
result.rewrite-rule.class 87
result.rewrite-rule.xsl 87

root-chunk-override 87
store-type 87
theme 90
transtype 87
validate 88
xep.dir 90

<pathelement> 168
PDF 23, 289

args.rellinks 83, 104, 228
change bars 113, 208
configuration properties 101
custom plug-in 183
customizing 111
customizing, best practices 111
draft 81
draft comments 157
fonts 184, 187
formatter 90, 100
HTML formatting differences 309
index 187
org.dita.pdf2 341
org.dita.pdf2.legacy 219
plug-in 141, 157, 184, 188
plug-in, history of 23, 309
plug-in, required software 367
plugin generator 190
pre-processing 308
related links 83, 104, 228
tables 187
themes 114
See also transformations

pdf.formatter 90
PDF2, See PDF plug-in, history of
PDFJ001E 273
PDFJ002E 273
PDFJ003I 273
PDFX001W 274
PDFX002W 274
PDFX003W 274
PDFX004F 274
PDFX005F 274
PDFX007W 274
PDFX008W 274
PDFX009E 274
PDFX011E 274
PDFX012E 275
PDFX013F 275
<ph> 225, 296
pipelines 289

Ant module 292
description of 289
HTML 305
Java module 292
map-first 201, 290
PDF 308
processing order 293
See also pre-processing

plug-ins 135, 145
Ant 158, 158
benefits 145
best practices 151
default, list of 23

dependencies 155
DITA specializations 151, 170
dita2dita 26
dita2eclipsehelp 24
dita2html5 23
dita2htmlhelp 24
dita2markdown 25
dita2pdf 23
dita2xhtml 27
DocBook 221
Eclipse Content 221
extension points 168, 338
HTML5 105
ideas for 157
identifiers 146
installing 137, 141
installing in Docker images 60
Java 165
JavaHelp 218
OpenDocument Text 221
order 155
parameters 163
plugin.xml 146, 151
prerequisites 155
registry 141
<require> 155
RTF 221
Saxon 172
TocJS 213
transformations 160
troubleshooting 166
uninstalling 139
upgrading 152, 199, 202, 217
URL 141
using file in another plug-in 156
working with 135
XSLT 163, 164

<plugin> 146
plugin.ignores 101
plugin.order 101
plugin.properties file 101
plugin.xml 151, 178, 325
plugindirs 101
plugins subcommand 76
Polish 193
Portuguese 186, 193
pre-processing 97, 158, 289

branch-filter 297
chunk 299
clean-map 305
conref 298
conrefpush 298
copy-files 305
copy-to 298
debug-filter 296
extension points (overview) 292
extension points, parameters 97, 336
extension points, Saxon 172
extension points, XSLT 334
flag-module 301
gen-list 295
keyref 297

map-first 201, 290
maplink 300
mapref 297
modules 295
move-meta-entries 300
profile 299
topic-fragment 299
topicpull 301
XSLT 97, 151, 156, 166, 168, 277
See also Java

<preface> 224
<prereq> 93
@print 299, 300
processing 292, 293
processing time 82, 283
processing-mode 87
@processing-role 311
@product 293
profile 299
profiling 297, 299, 312, 321

See also DITAVAL
project files

JSON 55
using 49
XML 52
YAML 57

project website, See dita-ot.org
<prop> 301
properties 99, 222
<property> 157, 157, 249
proxies 285
publish.required.cleanup 90

R

registry 101, 214, 215
relationship tables

maplink pre-processing step 300
mapref pre-processing step 297
normalized DITA 26
PDF 68

<reltable> 269
See also relationship tables

remove-broken-links 87
removing, See uninstalling
RenderX

change bars 113
local.properties file 100
plug-in 224
plugin generator 190
topic.fo 308
transform.fo2pdf 308
XSL-FO processor 31

<require> 148, 155, 175, 178, 180
<required-cleanup> 45
resourceonly.list 296
restoring samples 201
result.rewrite-rule.class 87, 87, 171
result.rewrite-rule.xsl 87, 87, 171
@rev 301
<revprop> 113, 301, 317
rewriting file names 171

RFC 5147 319
@role 91, 92, 94, 95, 104, 107
Romanian 193, 238
root-chunk-override 87
row-nocellborder class 201
RTF 221
Russian 193, 194, 238

S

samples, restoring 201
Saxon 152, 172, 202, 217, 299, 367

<service> 172, 173, 174
version 31
See also Ant

schema
DITA 1.2 311
DITA 1.3 312
RELAX NG 146, 155

SCORM 311
<section> 93, 298
security 214, 215
Serbian 193
setting parameters with plug-ins 157
<shortdesc> 300, 318
Simple Logging Facade for Java 367
<simpletable> 222
Slovak 193
Slovenian 193
Spanish 193
specializations, See DITA specializations
stack trace 249
stage1.xml 308
stage1a.xml 308
stage2.fo 308
stage3.fo 308
<startflag> 301
Store API 294
store-type 87
strings 192, 192, 193, 194, 194
subjectscheme.list 296
subtargets.list 296
SVG 216
Swedish 193, 238

T

table of contents
DOTX008W 263
DOTX009W 263
Eclipse Help 24, 262, 306
HTML Help 24, 269
HTML5 23, 96, 105, 160
Markdown 25
nav-toc 96, 105
navigation title 263
no title 263
PDF 224
XHTML 27, 96

tables
args.tablelink.style 83
DITAVAL 296

HTML5 221
indentation 219
PDF 187, 214, 221
tables.attr.xsl 187

tables-attr.xsl 187
targets

deprecated 215
Eclipse Help 306
HTML Help 307
HTML5 306
PDF 308
XHTML 306

temp-file-name-scheme 101
<template> 149, 168, 215
temporary file names 101
<term> 225
terminal, See command line
Thai 193
theme 90
third-party software 367
<titlealts> 81
TLS 214, 215
<toc> 224, 300
TOC, See table of contents
TocJS 213
tools.jar 277
topic-fragment 299
topic.fo 308, 308
topicmerge, See org.dita.pdf2.xsl.topicmerge
topicpull 301
<topicref> 21, 86, 300, 317
transformations 23, 113

creating 160
Eclipse Help 24
HTML 81, 105
HTML Help 24
HTML5 23, 105, 106
Markdown 25
normalized DITA 26
parameters 81
PDF 23, 111, 114, 183
XHTML 27

translating 192
transtype 87

custom 160
list 41, 76, 88
plugin.xml 149

transtypes subcommand 76
troubleshooting

plug-ins 166
<tt> styles 203
Turkish 193
@type 166, 185, 300

U

Ukrainian 193
 231
uninstall subcommand 76
uninstalling 75, 77, 139, 227
@unless:set 216

upgrading 152, 199, 202, 217
best practices 151
default plug-ins 111
PDF 111
plug-ins 199
See also installing, migrating

Urdu 193
user.input.dir 296
user.input.file 296
user.input.file.listfile 296

V

<val> 150, 317
validate 88, 146, 155, 261, 290
validate subcommand 76
validation 343
@value 147
<variable> 186
<vars> 194
verbose logging 245
version subcommand 76
Vietnamese 193, 194

W

web fonts, See fonts
whitespace handling 320
Windows 100

Ant 67
colored console output 101
configuring proxies 285
delimiter 82
dita command 35, 41
DITA-OT version 33
gradlew 241
help 279
increase Java memory 281
installing DITA-OT 29
plug-in registry checksum 142
rebuilding documentation 241

X

XDITA, See Lightweight DITA
XEP, See RenderX
xep.dir 90
XEPJ001W 275
XEPJ002E 275
XEPJ003E 275
Xerces 367
XHTML 27, 164, 289, 342

See also transformations
XML APIs 367
XML project files 52
XML Resolver 367
@xml:lang 85, 193, 194
<xmlatt> 312
<xmlcatalog> 156
<xmlelement> 312
<xref> 298, 298, 301, 334

XSL-FO processor , See Antenna House, Apache FOP,
RenderX
<xsl:import> 156, 168, 214
<xsl:include> 214
<xsl:param> 163
@xsl:sort 174
<xslt> 156
XSLT 81, 97, 155

1.0 152, 202, 217
2.0 31, 152, 202, 217, 227
3.0 202
Ant 67, 216
best practices 151
conref step 298
DITA-OT architecture 289
errors 166, 277
extension points 168, 334
flag-module preprocess step 301
Java 165
maplink pre-processing step 300
mapref pre-processing step 297
move-meta-entries 300
parameters 163, 336
PDF 308
pre-processing 164
processing modules 292
processor 31
Saxon 172, 173
stylesheet error 252
topicpull 301
URI resolver 174
using another plug-in 156
See also extension points, plug-ins, pre-processing

@xtrc 283, 296, 301, 317
@xtrf 283, 296, 301, 317

Y

Yahoo! dita-users group, See DITA Users group
YAML project files 57

	Contents
	DITA Open Toolkit 4.3
	Release Notes
	Requirements: Java 17
	DITA-OT 4.3.2
	DITA-OT 4.3.1 released March 23, 2025
	DITA-OT 4.3 released February 15, 2025

	Authoring formats
	Standard DITA XML
	Markdown input
	Lightweight DITA

	Output formats
	PDF
	HTML5
	Eclipse help
	HTML Help
	Markdown
	Normalized DITA
	XHTML

	Installing
	Prerequisite software
	Checking the version
	First build
	Installing via Homebrew

	Publishing
	Using the dita command
	Using a properties file
	Migrating Ant builds
	Using a project file
	XML project files
	JSON project files
	YAML project files

	Using Docker images
	Custom images

	Using GitHub Actions
	Using Ant
	Apache Ant™
	Building output using Ant
	Creating an Ant build script

	Using the Java API

	Configuring
	DITA command arguments
	DITA-OT parameters
	Common
	PDF
	HTML-based output
	HTML5
	XHTML
	HTML Help
	Eclipse Help
	Other

	Configuration properties
	.ditaotrc
	local.properties
	plugin.properties
	configuration.properties
	Internal Ant properties

	Customizing HTML
	Setting HTML parameters
	Adding navigation
	Adding custom CSS
	Headers and footers
	Handling content outside the map directory

	Using a properties file

	Customizing PDF
	Customization approaches
	Generating revision bars
	PDF themes
	Sample theme file
	Page settings
	Header and footer
	Header and footer size and alignment
	Simple header and footer
	Duplex header and footer
	Header image

	Styles
	XSL-FO extension properties
	Block styles
	Block keys
	appendix
	appendix-toc
	appendix-toc-<n>
	body
	chapter
	chapter-toc
	chapter-toc-<n>
	codeblock
	cover
	cover-title
	cover-titlealt
	dl
	example
	example-title
	fig
	fig-caption
	glossary
	h<n>
	hazardstatement
	hazardstatement-label
	hazardstatement-<type>-label
	index
	note
	note-label
	note-<type>
	note-<type>-label
	ol
	parml
	part
	part-toc
	part-toc-chapter
	part-toc-<n>
	pd
	plentry
	pre
	pt
	section
	section-title
	shortdesc
	table
	table-caption
	table-header
	task-labels
	toc
	toc-appendix
	toc-chapter
	toc-part
	toc-<n>
	ul

	Inline styles
	Inline keys
	apiname
	b
	cmdname
	codeph
	delim
	filepath
	fragment
	fragref
	groupchoice
	groupcomp
	groupseq
	i
	keyword
	kwd
	line-through
	link
	link-external
	markupname
	menucascade
	numcharref
	oper
	option
	overline
	parameterentity
	parmname
	repsep
	screen
	sep
	shortcut
	sub
	sup
	synblk
	synnote
	synnoteref
	synph
	syntaxdiagram
	systemoutput
	term
	textentity
	tm
	tt
	u
	uicontrol
	userinput
	var
	varname
	wintitle
	xmlatt
	xmlelement
	xmlnsname
	xmlpi

	Variables
	Extending themes
	Syntactic sugar
	Content
	Page dimensions
	Header and footer
	Topic titles

	Extending
	Installing plug-ins
	Removing plug-ins
	Plug-in registry
	Creating plug-ins
	Plug-in benefits
	Plug-in descriptor file
	Coding conventions
	Plug-in dependencies
	Referencing files from other plug-ins

	Plug-in use cases
	Setting parameters
	Adding a new Ant target
	Adding a pre-processing step
	Adding a new output format
	Processing topics with XSLT
	Adding new parameters
	Overriding XSLT steps
	Adding a Java library
	Adding new messages
	New extension points
	Extending an XML catalog file
	Rewriting file names
	Saxon customizations
	Saxon extensions
	Custom collation URI resolvers

	Custom HTML plug-ins
	Bundling custom CSS
	Embedding web fonts
	Inserting JavaScript

	Custom PDF plug-ins
	Types of PDF plug-ins
	PDF plug-in structure
	Custom artwork
	Index configuration
	Variable overrides
	Custom attributes
	Internationalization
	Custom stylesheets

	Simple PDF plug-in
	PDF plug-in resources

	Globalizing DITA content
	Globalization support
	Supported languages
	Customizing generated text
	Adding new strings
	Overriding strings
	Adding new languages

	Migrating customizations
	To 4.3
	To 4.2
	To 4.1
	To 4.0
	To 3.7
	To 3.6
	To 3.5
	To 3.4
	To 3.3
	To 3.2
	To 3.1
	To 3.0
	To 2.5
	To 2.4
	To 2.3
	To 2.2
	To 2.1
	To 2.0
	To 1.8
	To 1.7
	Flagging updates

	To 1.6
	To 1.5.4

	Rebuilding documentation

	Troubleshooting
	Logging
	Enabling debug mode
	DITA-OT error messages
	Other error messages
	Command line help
	Increasing Java memory
	Speeding up builds
	Configuring proxies

	Reference
	DITA-OT architecture
	Processing structure
	Map-first pre-processing
	Processing modules
	Processing order
	Store API
	Pre-processing modules
	Generate lists (gen-list)
	Debug and filter (debug-filter)
	Resolve map references (mapref)
	Branch filtering (branch-filter)
	Resolve key references (keyref)
	Copy topics (copy-to)
	Conref push (conrefpush)
	Resolve content references (conref)
	Filter conditional content (profile)
	Resolve topic fragments and code references (topic-fragment)
	Chunk topics (chunk)
	Move metadata (move-meta-entries) and pull content into maps (mappull)
	Map-based linking (maplink)
	Pull content into topics (topicpull)
	Flagging (flag-module)
	Map cleanup (clean-map)
	Copy related files (copy-files)

	HTML-based processing modules
	Common HTML-based processing
	XHTML processing
	HTML5 processing
	Eclipse help processing
	HTML Help processing

	PDF processing modules
	History of the PDF transformation

	DITA specification support
	DITA 1.2 support
	DITA 1.3 support
	DITA 2.0 preview
	Implementation-dependent features
	Codeblock extensions
	DITA features in docs

	Extension points
	All extension points
	General extension points
	Pre-processing extension points
	XSLT-import extension points
	XSLT-parameter extension points
	Version and support information
	Plug-in extension points
	Common processing
	PDF
	HTML-based output
	HTML5
	HTML Help
	Eclipse Help
	Markdown
	Validate

	Markdown formats
	Markdown DITA syntax
	Titles and document structure
	Topic content
	Specialization types
	Sections
	Tables
	Notes
	Markdown DITA map syntax
	Key definitions
	Relationship tables
	HTML
	DITA
	Common syntax
	Hard line breaks
	Links
	Images
	Key references
	Inline
	Lists
	Metadata

	MDITA syntax
	Titles and document structure
	Topic content
	Tables
	MDITA map syntax
	Common syntax
	Hard line breaks
	Links
	Images
	Key references
	Inline
	Lists
	Metadata

	Format comparison
	Markdown schemas
	DITA topic
	DITA concept
	DITA task
	DITA reference
	DITA map
	Lightweight DITA topic extended profile
	Lightweight DITA topic core profile

	Custom schemas
	Example
	Parsing
	Conversion to DITA

	License
	Third-party software

	Resources
	Web-based resources
	Books
	Glossary
	argument
	DITA Open Toolkit
	extension point
	option
	output format
	parameter
	plug-in
	processor
	property
	template
	transformation type
	variable
	XSL template

	Index
	Special Characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Y

